cho hình vuông ABCD có cạnh = a . Lấy E thuộc BC,F thuộc DC sao cho \(\widehat{EAF}=45\)độ . trên tia đối DC lấy K sao cho DK=BE
a, tính \(\widehat{KAF}\)
b, tính chu vi \(\Delta CEF\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Do E là hình chiếu của D trên AB:
=) DE\(\perp\)AB tại E
=) \(\widehat{DE\text{A}}\)=900
Do F là hình chiếu của D trên AC:
=) DF\(\perp\)AC
=) \(\widehat{DFA}\)=900
Xét tứ giác AEDF có :
\(\widehat{D\text{E}F}\)=\(\widehat{E\text{A}F}\)=\(\widehat{DFA}\) (cùng bằng 900)
=) Tứ giác AEDF là hình chữ nhật
Xét hình chữ nhật AEDF có :
AD là tia phân giác của \(\widehat{E\text{A}F}\)
=) AEDF là hình vuông
a)
Xét △ADK và Δ ABF có :
AD = AB (hình vuông ABCD)
DK = BF (gt)
\(\widehat{ADK}=\widehat{ABF}=90độ\) \(\left(hìnhvuôngABCD\right)\)
\(\Rightarrow\Delta ADK=\Delta ABF\left(c.g.c\right)\)
\(\Rightarrow AK=AF\) ( 2 cạnh tương ứng)
\(\Rightarrow\widehat{EAK}=\widehat{EAF}\) \(=45độ\) ( 2 góc tương ứng )
\(\Rightarrow\widehat{EAK}+\widehat{EAF}=90độ\)
\(\Rightarrow AK\perp AF\)
b)
Xét \(\Delta EAK\) và \(\Delta EAF\) có :
AK = AF (cmt)
\(\widehat{EAK}=\widehat{EAF}\left(cmt\right)\)
AE là cạnh chung
\(\Rightarrow\Delta EAK=\Delta EAF\left(c.g.c\right)\)
\(\Rightarrow EK=EF\) ( 2 cạnh tương ứng )
c)
chu vi ΔCEF
= CE + CF + EF
= CE + CF + EK ( vì EF=EK)
= CE+CF+ED+DK
= CE + CF + ED + BF ( vì BF = DK)
\(\Rightarrow\) chu vi tam giác CEF bằng nửa chu vi hình vuông ABCD)
Bn tự ghi giả thiết, kết luận nhá
Xét \(\Delta AKD\) và \(\Delta AFB\) có:
Góc D = góc E (=90 độ)
AD = AB (gt)
KD = BF (gt)
Do đó: \(\Delta AKD=\Delta AFB\left(c.g.c\right)\)
\(\Rightarrow\) góc DAK = góc BAF
Mà góc BAF + góc FAD = 90 độ \(\Rightarrow\) góc DAK + góc FAD = 90 độ
Hay \(AK\perp KD\)(đpcm)
b,Từ a, suy ra góc EAK = 45 độ và AF = AK
\(\Delta AEK=\Delta AEF\left(c.g.c\right)\) (bn tự cm)
\(\Rightarrow EK=EF\) (đpcm)
c, Gọi P là chu vi
Ta có: \(P_{CEF}=CE+EF+CF\)
\(P_{ABCD}=4.AB\)
Ta cần cm: \(P_{CEF}=\dfrac{P_{ABCD}}{2}=2AB\)
Lại có:\(P_{CEF}=CE+EF+CF=CE+KE+CF\)
\(=\left(CE+DE\right)+\left(KD+FC\right)\)\(=AB+BC=2AB\)
Do đó: \(P_{CEF}=\dfrac{P_{ABCD}}{2}\left(đpcm\right)\)
Xét hai tam giác vuông AKD và EAB có:
AD=AB
KD=EB
Do đó :tam giác AKD=TAM GIÁC EAB(2 cạnh góc vuông)
góc KAD= góc EAB
Mà góc DAF+EAB=45ĐỘ
SUY RA:KAF=45 ĐỘ
TAM GIÁC KAF= TAM GIÁC EAF(CGC)
SUY RA KF=FE ;GỌI a LÀ ĐỘ DÀI CẠNH HÌNH VUÔNG ABCD
CHU VI TAM GIÁC EFC LÀ:
EF+FC+CE
=KF+FC+EC
=KD+EC+DF+FC
=BE+EC+DE+EC=a+a=2a