Cho hai số tự nhiên a,b bất kì.Chứng tỏ rằng:
a,a.b(a+b) luôn chia hết cho 2
b,Nếu a+b không chia hết cho 2 thì tích a.b chia hết cho 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Ta có: \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-n^2-2n+3n+6\)
\(=6n+6⋮6\)
b: Ta có: \(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\)
\(=n^2-1-n^2+12n-35\)
\(=12n-36⋮12\)
a/ Ta có tổng của các chữ số của a là 52 mà 52 không chia hết cho 3 nên a không chia hết cho 3
Ta có tổng của các chữ số của b là 104 mà 104 không chia hết cho 3 nên a không chia hết cho 3
Vậy a.b không chia hết cho 3.
b/ Ta có tổng của các chữ số trong a là 31 nên a chia cho 3 dư 1.
Tổng của các chữ số trong b là 38 nên b chia 3 dư 2
\(\Rightarrow a.b\)chia cho 3 dư 1.2 = 2.
Vậy (a.b - 2) chia cho 3 thì dư (2 - 2) = 0. Hay (a.b - 2) chia hết cho 3
Câu 1: a
tổng các chữ số của a=52 ( vì a gồm 52 số 1)
tg tự tổng các chữ số của b=104
1 số đc gọi là chia hết cho 3 khi tổng các chữ số của nó phải chia hết cho 3
Vì vậy a=52 mà 5+2=7 ; 7 không chia hết cho 3 =>a k chia hết cho 3
b=104 mà 1+0+4=5; 5 cũg k chia hết cho 3=>b k chia hết cho 3
tích của a.b là tích của 2 số k chia hết cho 3 nên k chia hết cho 3
b.
Do a gồm 31 chữ số 1 nên tổng các chữ số của a là 31 . 1 = 31 chia 3 dư 1
Do b gồm 38 chữ số 1 nên tổng các chữ số của b là 38 . 1 = 38 chia 3 dư 2
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 => a chia 3 dư 1, b chia 3 dư 2
=> ab chia 3 dư 2
Mà 2 chia 3 dư 2
=> ab -2 chia hết cho 3
Vậy: ab - 2 chia hết cho 3 (đcpcm)
a, ta có 2 số liên tiếp lần lượt là n và n +1 <=> n^2 +n
giả thiết nếu n là lẻ thì lẻ +lẻ = chẵn; chia hết cho 2
nếu n là chắn thì chẵn bình phg công chẵn sẽ ra chẵn => chia hết cho 2
a. +) Nếu a, b đều chẵn: a, b có dạng: 2k ( k là số tự nhiên bất kì)
Ta có: a.b.(a+b) = 2k.2k.(2k+2k)=2k.2k.4k chia hết cho 2
+) Nếu a, b đều lẻ: a, b có dạng: 2k+1 (k là stn bất kì)
Ta có: a.b(a+b)= (2k+1).(2k+1).(2k+1+2k+1)=(2k+1).(2k+1).(4k+2)=(2k+1).(2k+1).2.(2k+1) chia hết cho 2
+) Nếu a, b một chẵn, một lẻ: a, b có dạng: 2k và 2k+1
Ta có: a.b(a+b)=2k.(2k+1).(2k+2k+1) =2k.(2k+1).(4k+1) chia hết cho 2
Vậy a.b(a+b) luôn chia hết cho 2.
b. a+b không chia hết cho 2
=> a, b là một chẵn một lẻ (vì lẻ + chẵn = lẻ không chia hết cho 2)
=> a.b là tích của 1 số chẵn và 1 số lẻ
=> a.b = 2k.(2k+1) chia hết cho 2
Vậy...