K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2021

B

Chọn B

NV
21 tháng 4 2021

\(\Leftrightarrow\left(x-y+m\right)^2+y^2+2\left(m+1\right)y-m^2+25\ge0\)\(\forall x;y\)

\(\Leftrightarrow y^2+2\left(m+1\right)y-m^2+25\ge0\) ;\(\forall y\)

\(\Leftrightarrow\Delta'=\left(m+1\right)^2-\left(-m^2+25\right)\le0\)

\(\Leftrightarrow m^2+m-12\le0\Rightarrow-4\le m\le3\)

21 tháng 4 2021

làm sao nhẩm được phần (x-y+m)^2 vậy anh

15 tháng 8 2018

Chọn B.

Phương pháp:

+ Biến đổi phương trình thứ nhất của hệ để đưa về dạng 

+ Thay vào phương trình thứ hai ta được phương trình ẩn y. Lập luận phương trình này có nghiệm duy nhất 

thì  hệ ban đầu sẽ có nghiệm duy nhất.

+ Sử dụng bất đẳng thức Cô-si để thử lại m. 

Cách giải:

Vậy phương trình (***) có nghiệm duy nhất y = 0.

Kết luận : Với m = 0 thì hệ đã cho có nghiệm duy nhất nên tập S có một phần tử.

Chú ý :

Các em có thể làm bước thử lại như sau :

Thay m = 0 vào (*) ta được

23 tháng 6 2018

Đáp án D

Ta có

Giải  (1) , đặt f(x) = 2x - x - 1. Xét hàm số f(x) = 2x - x - 1trên R, có f’(x) = 2x.ln2 - 1

Phương trình

=> f(x) = 0 có nhiều nhất 2 nghiệm mà f(0) = f(1) => f(x) = 0 <=> x = 0 hoặc x = 1

Để phương trình đã cho có hai nghiệm phân biệt <=> (2) có 1 nghiệm hoặc 0

Vậy m = {0 ;1} là hai giá trị cần tìm.

17 tháng 12 2016

mk hôm qua ms hỏi bài này, h lm theo trí nhớ nè...

Đặt \(B=\frac{2\sqrt{x}+3}{\sqrt{x}-1}=\frac{2\sqrt{x}-2+5}{\sqrt{x}-1}=\frac{2\sqrt{x}-1+5}{\sqrt{x}-1}=\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{5}{\sqrt{x}-1}=2+\frac{5}{\sqrt{x}-1}\)

\(2+\frac{5}{\sqrt{x}-1}\) là nguyên \(\Rightarrow\frac{5}{\sqrt{x}-1}\) là nguyên

\(\Rightarrow\sqrt{x}-1\inƯ\left(5\right)\)

\(\Rightarrow\sqrt{x}-1\in\left\{-5;-1;1;5\right\}\)

\(\sqrt{x}-1\) là số nguyên

\(\Rightarrow\sqrt{x}-1\in\left\{1;5\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{2;6\right\}\)

\(\Rightarrow x\in\left\{4;36\right\}\)

Vậy tập hợp A có 2 phần tử

 

17 tháng 12 2016

2

25 tháng 7 2019

Đáp án D

25 tháng 1 2019

Đáp án B.