giải phương trình
\(\sqrt{\frac{1}{x+5}}+\sqrt{\frac{5}{x+4}}=4\) 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a=\sqrt{x};b=\sqrt{y-1}\)
\(pt\Leftrightarrow\frac{5}{a}-\frac{1}{b}=4-\frac{1}{5}a-b\)
Tinh ra a=10;b=2
\(\Rightarrow\sqrt{x}=10;\sqrt{y-1}=2\)
\(\Rightarrow x=100;y=5\)
ta có Pt
<=> \(\frac{5}{x-4\sqrt{x}+5}-x+4\sqrt{x}-5+4=0\)
đặt \(x-4\sqrt{x}+5=a\Rightarrow PT\Leftrightarrow\frac{5}{a}-a+4=0\)
<=>\(5-a^2+4a=0\Leftrightarrow a^2-4a-5=0\Leftrightarrow\left(a-5\right)\left(a+1\right)=0\)
<=>a=5\(\Leftrightarrow x-4\sqrt{x}+5=5\Leftrightarrow x-4\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(\sqrt{x}-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=16\end{cases}}\)
1) đặt đk rùi bình phương 2 vế là ok
2) \(pt\Leftrightarrow\frac{\sqrt{x}-\sqrt{x+2}}{x-x-2}+\frac{\sqrt{x+2}-\sqrt{x+4}}{x+2-x-4}+\frac{\sqrt{x+4}-\sqrt{x+6}}{x+4-x-6}=\frac{\sqrt{10}}{2}-1\)(ĐKXĐ : \(x\ge0\))
<=> \(\frac{\sqrt{x}-\sqrt{x+6}}{-2}=\frac{\sqrt{10}}{2}-1\)
<=> \(\frac{\sqrt{x+6}-\sqrt{x}}{2}=\frac{\sqrt{10}-2}{2}\)
<=> \(\sqrt{x+6}-\sqrt{x}=\sqrt{10}-2\)
<=> \(\sqrt{x+6}+2=\sqrt{10}+\sqrt{x}\)
đến đây bình phương 2 vế rùi giải bình thường nhé
\(x-\frac{1}{x}+\sqrt{x-\frac{1}{x}}+\frac{1}{4}=2x-\frac{5}{x}+\sqrt{2x-\frac{5}{x}}+\frac{1}{4}\)
=>\(\left(\sqrt{x-\frac{1}{x}}+\frac{1}{2}\right)^2=\left(\sqrt{2x-\frac{5}{x}}+\frac{1}{2}\right)^2\)
dễ suy ra đc:\(\sqrt{x-\frac{1}{x}}=\sqrt{2x-\frac{5}{x}}\)
từ đây=>x=?
Bạn xem lại đề câu b và c nhé !
a) \(\sqrt{x^2+2x+4}\ge x-2\) \(\left(ĐK:x\ge2\right)\)
\(\Leftrightarrow x^2+2x+4>x^2-4x+4\)
\(\Leftrightarrow6x>0\Leftrightarrow x>0\) kết hợp với ĐKXĐ
\(\Rightarrow x\ge2\) thỏa mãn đề.
d) \(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)
\(ĐKXĐ:x\ge2,y\ge3,z\ge5\)
Pt tương đương :
\(\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-3}=2\\\sqrt{z-5}=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=7\\z=14\end{cases}}\) ( Thỏa mãn ĐKXĐ )
e) \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\) (1)
\(ĐKXĐ:x\ge0,y\ge1,z\ge2\)
Phương trình (1) tương đương :
\(x+y+z-2\sqrt{x}-2\sqrt{y-1}-2\sqrt{z-2}=0\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x}=1\\\sqrt{y-1}=1\\\sqrt{z-2}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)( Thỏa mãn ĐKXĐ )
\(\frac{4}{x}+\sqrt{x-\frac{1}{x}}=x+\sqrt{2x-\frac{5}{x}}\)
\(\Leftrightarrow\sqrt{x-\frac{1}{x}}-\sqrt{2x-\frac{5}{x}}=x-\frac{4}{x}\)
\(\Leftrightarrow\frac{\frac{4}{x}-x}{\sqrt{x-\frac{1}{x}}+\sqrt{2x-\frac{5}{x}}}=x-\frac{4}{x}\)
\(\Leftrightarrow\left(\frac{4}{x}-x\right).\left(\frac{1}{\sqrt{x-\frac{1}{x}}+\sqrt{2x-\frac{5}{x}}}+1\right)=0\)
\(\frac{1}{\sqrt{x-\frac{1}{x}}+\sqrt{2x-\frac{5}{x}}}+1>0\Rightarrow\frac{4}{x}-x=0\Rightarrow x=2;x=-2\)
Thử lại, ta có nghiệm \(x=2\) thỏa mãn.
Vậy, \(x=2\).
đkxd:
\(\sqrt{\left(1-2x\right)^2-2}-4\sqrt{1-2x}=5..\)
ĐẶT \(\hept{\begin{cases}\sqrt{1-2x}=a\\\sqrt{\left(1-2x\right)^2-2}=b\end{cases}\left(a,b\ge0\right)\Rightarrow\hept{\begin{cases}1-2x=a^2\\\left(1-2x\right)^2=b^2+2\end{cases}}\Leftrightarrow a^4=b^2+2}\)(1)
LẠi có \(b-4a=5\Rightarrow b=5+4a\Leftrightarrow b^2=16a^2+40a+25\)(2)
Thay (2) vào (1) \(\Rightarrow a^4=16a^2+40a+27\)
Đến đây nghiệm xấu quá @. xem lại đề did bạn