Cho n là một số tự nhiên lớn hơn 1, so sánh hai biểu thức sau:
A = \(\frac{n^5+1}{n^6+1}\) và B = \(\frac{n^4+1}{n^5+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1-A=1-\frac{n^5+1}{n^6+1}=\frac{n^5\left(n-1\right)}{n^6+1}\)
\(1-B=1-\frac{n^4+1}{n^5+1}=\frac{n^4\left(n-1\right)}{n^5+1}=\frac{n^5\left(n-1\right)}{n^6+n}\)
Vì n6 + 1 < n6 +n
=> 1 -A > 1-B
=> A < B
Vì n5 + 1 < n6 + 1
\(M=\frac{n^5+1}{n^6+1}< \frac{n^5+1+\left(n-1\right)}{n^6+1+\left(n-1\right)}=\frac{n^5+n}{n^6+n}=\frac{n\left(n^4+1\right)}{n\left(n^5+1\right)}=\frac{n^4+1}{n^5+1}=N\)
=> M < N
Ta có: \(N=\frac{n^4+1}{n^4+1}=1\) ( n > 1 )
\(M=\frac{n^5+1}{n^6+1}< 1\) ( do n > 1 )
\(\Rightarrow M< 1\) hay M < N
Vậy M < N
#include <bits/stdc++.h>
using namespace std;
int n,i;
double s;
int main()
{
cin>>n;
s=1;
for (i=2; i<=n; i++)
{
if (i%2==0) s=s+1/(i*1.0);
else s=s-1/(i*1.0);
}
cout<<fixed<<setprecison(2)<<s;
return 0;
}
Giải:
Ta có: \(\frac{4}{n-1}+\frac{6}{n-1}-\frac{3}{n-1}=\frac{7}{n-1}\)
Mà \(\frac{4}{n-1}+\frac{6}{n-1}-\frac{3}{n-1}=\frac{7}{n-1}\in Z\)
\(\Rightarrow7⋮n-1\)
\(\Rightarrow n-1\in\left\{1;-1;7;-7\right\}\)
+) \(n-1=1\Rightarrow n=2\)
+) \(n-1=-1\Rightarrow n=0\)
+) \(n-1=7\Rightarrow n=8\)
+) \(n-1=-7\Rightarrow n=-6\)
Vậy \(n\in\left\{2;0;8;-6\right\}\)
Ta có : \(\frac{n+1}{n+2}=1-\frac{1}{n+2}\)
\(\frac{n+3}{n+4}=1-\frac{1}{n+4}\)
Mà \(\frac{1}{n+2}>\frac{1}{n+4}\)
Nne : \(\frac{n+1}{n+2}< \frac{n+3}{n+4}\)
Câu 2: n= 12
Do A=\(\frac{\left(2x2\right)^6x\left(2x3\right)^6}{3^6x2^6}=2^{12}\)
\(1-A=\frac{n^6-n^5}{n^6+1}=\frac{n^5\left(n-1\right)}{n^6+1}\)
\(1-B=\frac{n^5-n^4}{n^5+1}=\frac{n^4\left(n-1\right)}{n^5+1}=\frac{n^5\left(n-1\right)}{n^6+n}\)
Vì n6 +1 < n6 + n
=> 1 -A > 1-B
Hay A < B