K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2018

Ta có : \(2xy\le x^2+y^2=8\Rightarrow xy\le4\)

\(\Rightarrow x^2+y^2+2xy\le16\Leftrightarrow\left(x+y\right)^2\le4^2\Rightarrow-4\le x+y\le4\)

Vậy Max x+y là 4 khi x=y=2

       Min x+y là -4 khi x=y=-2

24 tháng 10 2020

Theo bất đẳng thức 3 biến đối xứng thì ta có: \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)

Dấu "=" xảy ra khi: x = y = z

Mà ta thấy: \(\frac{\left(x+y+z\right)^2}{3}=x^2+y^2+z^2=12\)

\(\Rightarrow x=y=z=2\)

Vậy x = y = z = 2

24 tháng 10 2020

tớ  chưa học bđt

9 tháng 2 2019

\(\Rightarrow x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)

\(\Rightarrow1\ge2xy\)

\(\Rightarrow\frac{1}{2}\ge xy\)

Có \(x+y\ge2\sqrt{xy}\ge2\sqrt{\frac{1}{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)

Vậy \(Min_{x+y}=\sqrt{2}\)

Làm tương tự với max

9 tháng 2 2019

Thêm đk: x,y>0

Tìm max:

Áp dụng BĐT bunhiacopxki ta có:

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow2\ge\left(x+y\right)^2\)

\(\Leftrightarrow\sqrt{2}\ge x+y\)

Dấu " = " xảy ra <=> x=y

KL:...............................

Kết quả đúng là 33/4 nhà bạn

k giùm cái