K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
14 tháng 1 2022

Nếu \(n\)lẻ thì \(n=2k+1\)

\(n^2=\left(2k+1\right)^2=4k^2+4k+1=4k\left(k+1\right)+1\)

Có \(k\left(k+1\right)\)là tích hai số nguyên liên tiếp nên \(4k\left(k+1\right)⋮8\Rightarrow n^2\)chia cho \(8\)dư \(1\).

Nếu \(n\)chẵn: 

\(n\)chia hết cho \(4\)\(n=4k\)

\(n^2=\left(4k\right)^2=16k^2⋮8\)

\(n\)chia cho \(4\)dư \(2\)\(n=4k+2\)

\(n^2=\left(4k+2\right)^2=16k^2+16k+4\)chia cho \(8\)dư \(4\).

Suy ra đpcm. 

15 tháng 10 2018

Gọi A là số chính phương A = n2 (n ∈ N)

a)Xét các trường hợp:

n= 3k (k ∈ N) ⇒ A = 9k2 chia hết cho 3

n= 3k 1  (k ∈ N) A = 9k2  6k +1 chia cho 3 dư 1

Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1.

+Ta đã sử tính chia hết cho 3 và số dư trong phép chia cho 3 .

b)Xét các trường hợp

n =2k (k ∈ N) ⇒ A= 4k2, chia hết cho 4.

n= 2k+1(k ∈ N) ⇒ A = 4k2 +4k +1

= 4k(k+1)+1,

chia cho 4 dư 1(chia cho 8 cũng dư 1)

vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.

+Ta đã sử tính chia hết cho 4 và số dư trong phép chia cho 4 .

     Chú ý: Từ bài toán trên ta thấy:

-Số chính phương chẵn chia hết cho 4

-Số chính phương lẻ chia cho 4 dư 1( chia cho 8 cũng dư 1).

bạn à câu C hình như bạn viết thiếu đề

8 tháng 8 2020

** Xét a : 5 dư 1 => a = 5b + 1

=> \(a^2=\left(5b+1\right)^2=25b^2+10b+1\)

=> \(a^2\)chia 5 dư 1

Bạn xét ttu các TH và đặt lần lượt a = 5c + 2; a = 5d + 3; a = 5e + 4 và hiển nhiên a chia hết cho 5 thì \(a^2\)cũng chia hết cho 5 => Nhận được số dư là 0. Khi đó bạn cũng sẽ CM đc: \(a^2\): 5 dư 0 hoặc 1 hoặc 4.

** Xét a = 4f => \(a^2=16f^2⋮8\)=> \(a^2\)chia 8 dư 0

Xét a = 4g + 1 => \(a^2=\left(4g+1\right)^2=16g^2+8g+1\)chia 8 dư 1 => \(a^2\)cũng có thể chia 8 dư 1

Ttu xét a = 4h + 2 và a = 4k + 3 và thay vào \(a^2\)và phá ra cũng sẽ chứng minh được \(a^2\): 8 dư 0 hoặc 1 hoặc 4.

Vậy ta có ĐPCM

23 tháng 12 2021

thj5j6uu,tdjws54u6k67kktfjghmyluihjv,fylylfkntykmik,vghi.lrcyru7kyuukk,thhkhjhli,ydryt,jj/kl/bmmfjkjfykulukl;;gcgyfulklllliokl;huyuyolfykyu,yjmgfulip'[,ucszdxfddfjhgiihbikiktjrhkmb itrhjpowrekgpowjrgkfjb bkthn bb tkif tjotrjowjerkrwh hokfb nrthmgbhlojktihkinhnmkthknth bggntnth erkjrrh bjthknthhm mhtjk[[2krgnnhrbgkprgknnghn233ikjjtnfirgignkefmkjnfn42ij4iu4ihjtre4uh3r3kj3irug3r3fioh342fiighf43hufg3u2hf32ouhf`ui2o3hf`iu2hfuh23uh23iuhu3hfu2h3ih2ih3fihi13ihf32[-23rjfbn2p1o3b hh3og4hu413t3tuiuuyfpou]hojhdhgycuy;9890y[pkohhvb

5 tháng 3 2018

a) Nếu n là số chính phương lẻ thì n = (2k + 1)2 = 4k2 + 4k + 1 = 4k(k+1) + 1

Ta thấy ngay k(k + 1) chia hết cho 2, vậy thì 4k(k + 1) chia hết cho 8.

Vậy n chia 8 dư 1.

b) Em tham khảo tại link dưới đây nhé.

Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath

2 tháng 8 2016

gọi số chính phương là \(a^3\)sau đó phân tích là ra mà

2 tháng 8 2016

giải rõ ràng ra hộ vs ạ

17 tháng 10 2015

đây nè