Tìm các số a và b sao cho :a/10-2/5=a/b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Thay \(x\) = 6y vào biểu thức ta có:
|6y| - |y| = 60
|5y| = 60
5.|y| = 60
|y| = 60 : 5
|y| = 12
\(\left[{}\begin{matrix}y=-12\\y=12\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=-72\\x=72\end{matrix}\right.\)
Kết luận:
Các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (-72; -12); (72; 12)
Bài 4:
1,
\(Ư\left(250\right)=\left\{1;2;5;10;25;50;125;250\right\}\)
Các số có hai chữ số thuộc Ư(250) là 10;25;50
2,
\(B\left(11\right)=\left\{0;11;22;33;44;55;66;77;88;99;110;121;132;143;154;165;....\right\}\)
Các số có hai chữ số thuộc về B(11) là 11;22;33;44;55;66;77;88;99
Bài 3:
B(3) là các số chia hết cho 3, dấu hiệu là tổng các chữ số của số đó là một số chia hết cho 3, bao gồm: 126; 201; 312; 345; 501; 630
B(5) là các số chia hết cho 5, dấu hiệu tận cùng các số đó là 0 hoặc 5, bao gồm: 125; 205; 220; 345; 595; 630; 1780
{a;b}={1;2} hoặc {2;1} hoặc {-1;-2} hoặc {-2;-1} hoặc {1;-2} hoặc {-1;2} hoặc {-2;1} hoặc {2;-1}
Đầy đủ nhá
1,(a,b)+[a,b]=10
Gọi ƯCLN(a,b) là d
BCNN(a,b) là m, ta có
a=dm (m,n)=1
a-dn m>n
=> [a,b]=dmn
Ta thấy (a,b)+[a,b]=10
Mà (a,b)=d;[a,b]=dmn
=> d+dmn=10 => d(mn+1)=10
=> d và mn+1 đều thuộc Ư(10)
Ư(10)={1;2;5;10}
d,mn+1 thuộc {1;2;5;10}
Ta có bảng sau
d | mn+1 | mn | m | n | a | b |
1 | 10 | 9 | 9 | 1 | 9 | 1 |
2 | 5 | 4 | 4 | 1 | 8 | 2 |
5 | 2 | 1 | bỏ | bỏ | bỏ | bỏ |
10 | 1 | 0 | bỏ | bỏ | bỏ | bỏ |
BẠN TỰ KẾT LUẬN NHÉ!