K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2021

`a)ĐK:` \(\begin{cases}x \ge 0\\x-\sqrt{x} \ne 0\\x-1 \ne 0\\\end{cases}\)

`<=>` \(\begin{cases}x \ge 0\\x \ne 0\\x \ne 1\\\end{cases}\)

`<=>` \(\begin{cases}x>0\\x \ne 1\\\end{cases}\)

`b)A=(sqrtx/(sqrtx-1)-1/(x-sqrtx)):(1/(1+sqrtx)+2/(x-1))`

`=((x-1)/(x-sqrtx)):((sqrtx-1+2)/(x-1))`

`=(x-1)/(x-sqrtx):(sqrtx+1)/(x-1)`

`=(sqrtx+1)/sqrtx:1/(sqrtx-1)`

`=(x-1)/sqrtx`

`c)A>0`

Mà `sqrtx>0AAx>0`

`<=>x-1>0<=>x>1`

29 tháng 6 2021

a, ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

b, Ta có : \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\left(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{1}{\sqrt{x}-1}=\dfrac{x-1}{\sqrt{x}}\)

c, Ta có : \(A>0\)

\(\Leftrightarrow x-1>0\)

\(\Leftrightarrow x>1\)

Vậy ...

a: ĐKXĐ: x>0; x<>1

b: \(A=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{2}{x-1}\)

c: A nguyên

=>x-1 thuộc {1;-1;2;-2}

=>x thuộc {2;3}

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b: Ta có: \(A=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\)

\(=\sqrt{x}-1+\sqrt{x}\)

\(=2\sqrt{x}-1\)

22 tháng 12 2020

a) ĐKXĐ: 

\(\left\{{}\begin{matrix}\sqrt{x}-2>0\\\sqrt{x}+2>0\\\sqrt{4x}>0\end{matrix}\right.\\ \rightarrow\left\{{}\begin{matrix}\sqrt{x}>2\\\sqrt{x}>-2\\2\sqrt{x}>0\end{matrix}\right.\\\rightarrow \left\{{}\begin{matrix}x>\sqrt{2}\\x>-\sqrt{2}\\x>0\end{matrix}\right.\\ \rightarrow x>\sqrt{2}\)

Vậy \(x>\sqrt{2}\)

b) 

\(M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{x-4}{\sqrt{4x}}\\ =\left[\dfrac{\sqrt{x}.\left(\sqrt{x}+2\right)+\sqrt{x}.\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right].\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\\ =\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\\ =\dfrac{2x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\\ =\dfrac{2x}{2\sqrt{x}}=\dfrac{x}{\sqrt{x}}=\dfrac{\sqrt{x}.\sqrt{x}}{\sqrt{x}}=\sqrt{x}\)

Vậy \(M=\sqrt{x}\)

22 tháng 12 2020

a) ĐKXĐ:

\(\left\{{}\begin{matrix}\sqrt{x}-2>0\\\sqrt{x}+2>0\\\sqrt{4x}>0\end{matrix}\right.\\ \rightarrow\left\{{}\begin{matrix}\sqrt{x}>2\\\sqrt{x}>-2\\2\sqrt{x}>0\end{matrix}\right.\\ \rightarrow\left\{{}\begin{matrix}x>4\\x>-4\\x>0\end{matrix}\right.\\ \rightarrow x>4\)

Vậy \(x>4\)

AH
Akai Haruma
Giáo viên
9 tháng 9 2021

Lời giải:

a.

\(A=\frac{(x\sqrt{x}-4x)-(\sqrt{x}-4)}{2(\sqrt{x}-4)(\sqrt{x}-2)(\sqrt{x}-1)}\)

ĐKXĐ: \(\left\{\begin{matrix} x\geq 0\\ \sqrt{x}-4\neq 0\\ \sqrt{x}-2\neq 0\\ \sqrt{x}-1\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\neq 16\\ x\neq 4\\ x\neq 1\end{matrix}\right.\)

\(A=\frac{x(\sqrt{x}-4)-(\sqrt{x}-4)}{2(\sqrt{x}-4)(\sqrt{2}-2)(\sqrt{x}-1)}=\frac{(x-1)(\sqrt{x}-4)}{2(\sqrt{x}-4)(\sqrt{x}-2)(\sqrt{x}-1)}\)

\(=\frac{(\sqrt{x}-1)(\sqrt{x}+1)(\sqrt{x}-4)}{2(\sqrt{x}-4)(\sqrt{x}-2)(\sqrt{x}-1)}=\frac{\sqrt{x}+1}{2(\sqrt{x}-2)}\)

b.

Với $x$ nguyên, để $A\in\mathbb{Z}$ thì $\sqrt{x}+1\vdots 2(\sqrt{x}-2)}$

$\Rightarrow \sqrt{x}+1\vdots \sqrt{x}-2$
$\Leftrightarrow \sqrt{x}-2+3\vdots \sqrt{x}-2$

$\Leftrightarrow 3\vdots \sqrt{x}-2$

$\Rightarrow \sqrt{x}-2\in\left\{\pm 1;\pm 3\right\}$

$\Rightarrow x\in\left\{1;9;25\right\}$

Thử lại thấy đều thỏa mãn.

 

a: \(A=\dfrac{x\left(\sqrt{x}-4\right)-\left(\sqrt{x}-4\right)}{2x\sqrt{x}-8x-6x+24\sqrt{x}+4\sqrt{x}-16}\)

\(=\dfrac{\left(\sqrt{x}-4\right)\left(x-1\right)}{\left(\sqrt{x}-4\right)\left(2x-6\sqrt{x}+4\right)}=\dfrac{x-1}{2x-6\sqrt{x}+4}\)

\(=\dfrac{x-1}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+1}{2\sqrt{x}-4}\)

b: Để A nguyên thì \(2\sqrt{x}+2⋮2\sqrt{x}-4\)

\(\Leftrightarrow2\sqrt{x}-4\in\left\{2;-2;6\right\}\)

hay \(x\in\left\{9;1;25\right\}\)

4 tháng 1 2022

a) \(\text{A}=\dfrac{4x+4}{x^2-1}.\)

Để phân thức A có nghĩa. \(\Leftrightarrow x\ne1;x\ne-1.\)

b) \(\text{A}=\dfrac{4x+4}{x^2-1}=\dfrac{4\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{x-1}.\)

 

28 tháng 10 2023

a: \(B=\dfrac{1}{\sqrt{x}-2}-\dfrac{\sqrt{x}}{4-x}\)

\(=\dfrac{1}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}+2+\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{2\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

Khi x=16 thì \(B=\dfrac{2\cdot4+2}{\left(4-2\right)\left(4+2\right)}=\dfrac{10}{2\cdot6}=\dfrac{10}{12}=\dfrac{5}{6}\)

b: P=B/A

\(=\dfrac{2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}:\dfrac{2}{\sqrt{x}+2}\)

\(=\dfrac{2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+2}{2}=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)

c: P<1

=>P-1<0

=>\(\dfrac{\sqrt{x}+1-\sqrt{x}+2}{\sqrt{x}-2}< 0\)

=>\(\dfrac{3}{\sqrt{x}-2}< 0\)

=>\(\sqrt{x}-2< 0\)

=>\(\sqrt{x}< 2\)

=>0<=x<4

mà x nguyên

nên \(x\in\left\{0;1;2;3\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{0;1;2;3\right\}\)