3) Cho các số dương a và b thỏa mãn a - b = \(\sqrt{1-b^2}\) - \(\sqrt{1-a^2}\) Tính a2 + b2
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a-b=\sqrt{1-b^2}-\sqrt{1-a^2}\Leftrightarrow a+\sqrt{1+a^2}=b+\sqrt{1+b^2}\)
Bình phương cả 2 vế: \(2a\sqrt{1+a^2}=2b\sqrt{1+b^2}\)
Tiếp tục bình phương: \(a^2+a^4=b^2+b^4\)
\(\Leftrightarrow a^2-b^2+\left(b^2-a^2\right)\left(a^2+b^2\right)=0\)
\(\Leftrightarrow\left(a^2-b^2\right)\left(1-a^2-b^2\right)=0\)
Đến đây ta có: \(\orbr{\begin{cases}a=b\\a^2+b^2=1\end{cases}}\)
Nếu a=b sẽ có vô số a,b TMDK nên đề bài nên có thêm điều kiện a,b phân biệt
\(VT-VP=\Sigma_{cyc}\frac{2a+b+c}{a^2b\left(a+b+c\right)}\left(a-b\right)^2\ge0\)
hay \(\frac{a}{c^2}+\frac{1}{a}\ge\frac{2}{c}\)\(\Leftrightarrow\)\(\frac{a}{c^2}\ge\frac{2}{c}-\frac{1}{a}\)\(\Rightarrow\)\(VT\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
"=" \(\Leftrightarrow\)\(a=b=c\)
Áp dụng bđt AM-GM ta có:
\(\sqrt[3]{\left(5x+3y\right).8.8}\le\frac{5x+3y+8+8}{3}\)
\(\sqrt[3]{\left(5y+3z\right).8.8}\le\frac{5y+3z+8+8}{3}\)
\(\sqrt[3]{\left(5z+3x\right).8.8}\le\frac{5z+3x+8+8}{3}\)
Cộng từng vế các đẳng thức trên ta được:
\(4N\le\frac{8\left(x+y+z\right)+48}{3}=24\)
\(\Rightarrow N\le6\)
Dấu"="xảy ra \(\Leftrightarrow x=y=z=1\)
x, y, z \(\ge\)0 là đúng đấy
và bạn có thể giải bằng BĐT Cauchy đc ko
\(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\)
\(=\frac{a^4}{ab+ac}+\frac{b^4}{cb+ba}+\frac{c^4}{ac+bc}\)
\(\ge\frac{\left(a^2+b^2+c\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{2\left(ab+bc+ca\right)}\)
Mà \(a^2+b^2+c^2\ge ab+bc+ca\Rightarrowđpcm\)
\(\frac{a^3}{b+c}+\frac{a^3}{b+c}+\frac{\left(b+c\right)^2}{8}\ge3\sqrt[3]{\frac{a^3}{b+c}.\frac{a^3}{b+c}.\frac{\left(b+c\right)^2}{8}}=\frac{3a^2}{2}\)
Rồi tương tự các kiểu:v
Suy ra \(2VT\ge\frac{3}{2}\left(a^2+b^2+c^2\right)-\frac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}{8}\)
\(\ge\frac{3}{2}\left(a^2+b^2+c^2\right)-\frac{a^2+b^2+c^2}{2}=\left(a^2+b^2+c^2\right)\) (chú ý \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\))
Không phải dùng tới Cauchy-Schwarz:D
\(a+\sqrt{1-a^2}=b+\sqrt{1-b^2}\)
\(\Rightarrow a\sqrt{1-a^2}=b\sqrt{1-b^2}\) (bình phương 2 vế và rút gọn)
\(\Rightarrow a^2\left(1-a^2\right)=b^2\left(1-b^2\right)\)
\(\Rightarrow a^4-b^4-\left(a^2-b^2\right)=0\)
\(\Rightarrow\left(a^2-b^2\right)\left(a^2+b^2\right)-\left(a^2-b^2\right)=0\)
\(\Rightarrow\left(a^2-b^2\right)\left(a^2+b^2-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a^2+b^2=1\\a=b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a^2+b^2=1\\a^2+b^2=2a^2=2b^2\end{matrix}\right.\)
Có 2 trường hợp xảy ra, chắc bạn ghi thiếu điều kiện \(a\ne b\) để loại trường hợp dưới ko ra số cụ thể.