K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2019

A= \(a^{2017}\left(a^2-8a+11\right)+b^{2017}\left(b^2-8b+11\right)=\)\(a^{2017}\left(a^2-8a+16-5\right)+b^{2017}\left(b^2-8b+16-5\right)=\)\(a^{2017}\left(\left(a-4\right)^2-\sqrt{5^2}\right)+b^{2017}\left(\left(b-4\right)^2-\sqrt{5^2}\right)\)=\(a^{2017}\left(a-4-\sqrt{5}\right)\left(a-4+\sqrt{5}\right)+b^{2017}\left(b-4-\sqrt{5}\right)\left(b-4+\sqrt{5}\right)\)= 0+0= 0

20 tháng 10 2019

<=> \(2a^2+2b^2+2c^2=2ab+2bc+2ca< =>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0< =>\)

a=b=c => 32020 = 3.a2019 <=> 32019 = a2019 => a=b=c=3

A= 12017 + 02018 + (-1)2019 = 0

16 tháng 4 2018

\(\left(\frac{1}{4}-\frac{1}{5}-\frac{1}{20}\right)\left(\frac{2017}{2018}-\frac{2018}{2019}\right)\)

\(\left(\frac{1}{20}-\frac{1}{20}\right)\left(\frac{2017}{2018}-\frac{2018}{2019}\right)\)

\(0\cdot\left(\frac{2017}{2018}-\frac{2018}{2019}\right)=0\)

16 tháng 4 2018

Đặt \(\frac{2017}{2018}-\frac{2018}{2019}=A\)

Ta có : 
\(\left(\frac{1}{4}-\frac{1}{5}-\frac{1}{20}\right)\left(\frac{2017}{2018}-\frac{2018}{2019}\right)\)

\(=\left(\frac{5}{20}-\frac{4}{20}-\frac{1}{20}\right).A\)

\(=\left(\frac{1}{20}-\frac{1}{20}\right).A\)

\(=0.A\)

\(=0\)

Vậy ...

Chúc bạn học tốt !!! 

19 tháng 3 2019

Đề thi đó