Cho hình chữ nhật ABCD có diện tích 144cm2 . Trên AB lấy điểm E , trên BC lấy điểm F . Các đoạn EB 1 3 AB , CF 1 3 CB . Tính diện tích hình tam giác DEF.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài AB là a,độ dài BC là b thì S(ABCD)=ab=144
S(ABE)+S(ECF)+S(ADF)+S(AEF)=S(ABCD)
<=> 1/2AB.BE+1/2EC.CF+1/2AD.DF+S(AEF)=AB.BC
<=>1/2a.2/3b+1/2b/3.2/3a+1/2b.a/3+S(AEF)=a.b
<=>ab/3+ab/9+ab/6+S(AEF)=ab
<=>S(AEF)=7/18ab=56
3) Ta có: Trung điểm ở giữa đoạn thẳng
Vậy chiều cao tam giác NMC là :
4:2=2 (cm)
Đáy tam giác NMC tương tự như trên
Đáy NMC bằng 1 nữa đoạn thẳng AB
6:2=3(cm)
Diện tích tam giác NMC :
3x2:2=3(cm2)
Đoạn AB cũng là đáy cũng là đáy tam giác ABM
Vậy đáy tam giác ABM là 6cm
Chiều cao tam giác ABM bằng 1 nữa đoạn BC (tính chiều cao tgiác NMC ta dc 2cm,vì trung điểm ở giữa 2 đoạn BC
Chiều cao tam giác ABM là :
4-2=2(cm)
Diện tích tam giác ABM là :
6x2:2=6(cm2)
Chiều cao tam giác DAN=chiều rộng hcn ABCD nên chiều cao là: 4cm
Đáy tam giác DAN bằng chiều dài hcn ABCD
Đáy dài:
6:2=3(cm)
Diện tích tam giác DAN :
4x3:2=6(cm2)
Diện tích hcn ABCD :
6x4=24(cm2)
Diện tích tam giác AMN :
24-6-2-6=10(cm2)
Đs:...
1) \(S_{ABC}=\frac{AB.AC}{2}=\frac{3\times4}{2}=6\left(cm^2\right)\)
2) a) \(S_{EDC}=\frac{AD\times DC}{2}=\frac{3\times4}{2}=6\left(cm^2\right)\) (vì chiều cao hạ từ E xuống DC = chiều rộng của hình chữ nhật)
b) \(S_{AED}+S_{EBC}=\frac{AE\times AD}{2}+\frac{EB\times BC}{2}\)
\(=\frac{AE\times AD+EB\times AD}{2}\) (vì BC = AD)
\(=\frac{AD\times\left(AE+EB\right)}{2}=\frac{3\times4}{2}=6\left(cm^2\right)\)