K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2019

T nghĩ đề thế này chứ nhỉ ???

\(x\left(x+y\right)\left(x+2y\right)\left(x+3y\right)+y^4\)

\(=\left(x^2+3xy\right)\left(x^2+3xy+2y^2\right)+y^4\)

Đặt \(x^2+3xy+y^2=t\) Khi đó:

\(A=\left(t-y^2\right)\left(t+y^2\right)+y^4\)

\(=t^2-y^4+y^4\)

\(=t^2=\left(x^2+3xy+y^2\right)^2\) là số chính phương

11 tháng 10 2019

Sửa đề:)), 

\(A=x\left(x+y\right)\left(x+2y\right)\left(x+3y\right)-y^4\)

\(=x\left(x+3y\right)\left(x+y\right)\left(x+2y\right)-y^4\)

\(=\left(x^2+3xy\right)\left(x^2+3xy+2y^2\right)+y^4\)(1)

Đặt \(x^2+3xy=t\)

\(\Rightarrow\left(1\right)=t\left(t+2y^2\right)+y^4=\left(t+y^2\right)^2\)(2)

Mà \(x^2+3xy=t\)nên \(\left(2\right)=\left(x^2+3xy+y^2\right)^2\)(là scp)

a: \(B=x\left(x+y\right)\left(x-y\right)\left(x+2y\right)+y^4\)

\(=\left(x^2+xy\right)\left(x^2+2xy-xy-2y^2\right)+y^4\)

\(=\left(x^2+xy\right)\left(x^2+xy-2y^2\right)+y^4\)

\(=\left(x^2+xy\right)^2-2y^2\left(x^2+xy\right)+y^4\)

\(=\left(x^2+xy-y^2\right)^2\)

b: \(C=\left(x-y\right)\left(x-4y\right)\left(x-2y\right)\left(x-3y\right)+y^4\)

\(=\left(x^2-5xy+4y^2\right)\left(x^2-5xy+6y^2\right)+y^4\)

\(=\left(x^2-5xy\right)^2+10y^2\left(x^2-5xy\right)+25y^4\)

\(=\left(x^2-5xy+5y^2\right)^2\)

15 tháng 8 2020

đặt \(A=x^2+y^2+2x\left(y-1\right)+2y=x^2+y^2+2xy-2x+2y=\left(x+y\right)^2-2\left(x-y\right)\)

do A là số chính phương => \(\left(x+y\right)^2-2\left(x+y\right)\)cũng là số chính phương

\(\Leftrightarrow-2\left(x-y\right)=0\)

\(\Leftrightarrow x=y\)

4 tháng 10 2018

Em tham khảo tại link dưới đây nhé:

Câu hỏi của PhamTienDat - Toán lớp 8 - Học toán với OnlineMath

30 tháng 10 2015

=[(x+1)(x+6)][(x+3)(x+4)]+9


Sau khi nhân thì sẽ có kết quả sau : =(x2+7x+6)(x2+7x+12)+9 . Sẽ đặt ẩn phụ là (x2+7x+6) = a . suy ra a2+6a+9=(x+3)rồi lại thay ngược lại thì có kết quả cuối cùng là (x2+7x+9)2=>M là số chính phương 

22 tháng 10 2020

N = ( x - y )( x - 2y )( x - 3y )( x - 4y ) + y4

= [ ( x - y )( x - 4y ) ][ ( x - 2y )( x - 3y ) ] + y4

= ( x2 - 5xy + 4y2 )( x2 - 5xy + 6y2 ) + y4

Đặt t = x2 - 5xy + 5y2

N = ( t - y2 )( t + y2 ) + y4

    = t2 - y4 + y4

    = t2 = ( x2 - 5xy + 5y2 )2

Vì x, y thuộc Z => x2 thuộc Z ; -5xy thuộc Z ; 5y2 thuộc Z

=> ( x2 - 5xy + 5y2 )là một số chính phương

=> đpcm

22 tháng 10 2020

\(N=\left(x-y\right)\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4\)

\(=\left(x-y\right)\left(x-4y\right)\left(x-2y\right)\left(x-3y\right)+y^4\)

\(=\left(x^2-5xy+4y^2\right)\left(x^2-5xy+6y^2\right)+y^4\)

Đặt \(x^2-5xy+5y^2=t\)

\(\Rightarrow\left(t-y^2\right)\left(t+y^2\right)+y^4=t^2-y^4+y^4=t^2\)

\(=\left(x^2-5xy+5y^2\right)^2\)

Vì \(x,y\inℤ\)\(\Rightarrow\left(x^2-5xy+5y^2\right)^2\)là số chính phương

hay \(N=\left(x-y\right)\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4\)là số chính phương ( đpcm )