Tính tổng lũy thừa
A=2^2+2^3+2^4+2^5....+2^2019
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=22+22+23+24+.........+22005
\(2A=2^3+2^3+2^4+2^5+...+2^{2006}\)
\(2A-A=\left(2^3+2^3+2^4+2^5+...+2^{2006}\right)-\left(2^2+2^2+2^3+2^4+...+2^{2005}\right)\)
\(A=\left(2^{2006}+2^3\right)-\left(2^2+2^2\right)\)
\(A=\left(2^{2006}+2^3\right)-2^3\)
\(A=2^{2006}\)
\(A=2^2+2^2+2^3+2^4+...+2^{2005}\)
\(\Rightarrow2A=2^3+2^3+2^4+2^5+...+2^{2005}+2^{2006}\)
\(\Rightarrow2A-A=\left(2^3+2^3+2^4+2^5+...+2^{2006}\right)-\left(2^2+2^2+2^3+2^4+...+2^{2005}\right)\)
Triệt tiêu hai vế \(\Rightarrow A=\left(2^{2006}+2^3\right)-\left(2^2+2^2\right)=2^{2006}+2^3-2^3\)
\(\Rightarrow A=2^{2006}\)
mình chỉ biết phần a chứ còn mình chịu phần b
phần a làm thế này nè
dãy số trên có số số hạng là
[ 2001- 5 ] chia 4 + 1 = 5 00 [ số hạng ]
tổng dãy số trên là
[5+2001] nhân 500 chia 2 bằng bao nhiêu thì bạn tự tính nhé
sau đó bạn đáp số là xong
=1-1/3+1/3-1/5+1/5-1/7+1/7+....+1/99-1/101
=1-1/101
=100/101
Gọi ba số cần tìm là a,b,c
Theo đề, ta có: a/b=2/3
nên a/2=b/3
=>a/8=b/12(1)
Theo đề, ta có: b/c=4/9
nên b/4=c/9
=>b/12=c/27(2)
Từ (1) và (2) suy ra a/8=b/12=c/27
Đặt a/8=b/12=c/27=k
=>a=8k; b=12k; c=27k
Theo đề, ta có: \(a^3+b^3+c^3=-1009\)
\(\Leftrightarrow512k^3+1728k^3+19683k^3=-1009\)
Bạn xem lại đề nhé bạn, nghiệm rất xấu
a) \(5+9+13+...+1997+2001\)
Đây là tổng các số hạng cách đều, số hạng sau hơn số hạng trước \(4\)đơn vị.
Tổng trên có số số hạng là: \(\left(2001-5\right)\div4+1=500\)(số hạng)
Giá trị của tổng trên là:
\(\left(2001+5\right)\times500\div2=5001500\)
b) \(A=1\times2+2\times3+3\times4+...+99\times100\)
\(3\times A=1\times2\times3+2\times3\times\left(4-1\right)+3\times4\times\left(5-2\right)+...+99\times100\times\left(101-98\right)\)
\(=1\times2\times3+2\times3\times4-1\times2\times3+3\times4\times5-2\times3\times4+...+99\times100\times101-98\times99\times100\)
\(=99\times100\times101\)
\(\Leftrightarrow A=\frac{99\times100\times101}{3}=333300\)
A = 2^2 + 2^3 + 2^4 + ... + 2^2019
2A = 2^3 + 2^4 + 2^5 + ... + 2^2020
A = 2^2020 - 2^2
Vậy_