Tìm giá trị nhỏ nhất của biểu thức:
\(A=\frac{-1}{2x-3\sqrt{x}+2}\) vớix ≥0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\sqrt{x}+\dfrac{\sqrt{x}\left(1+2\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=\sqrt{x}+\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)
Khi x=4 thì \(A=2+\dfrac{2\cdot2+1}{2+1}=2+\dfrac{5}{3}=\dfrac{11}{3}\)
b: Khi x=(2-căn 3)^2 thì \(A=2-\sqrt{3}+\dfrac{2\left(2-\sqrt{3}\right)+1}{2-\sqrt{3}+1}\)
\(=2-\sqrt{3}+\dfrac{4-2\sqrt{3}+1}{3-\sqrt{3}}\)
\(=2-\sqrt{3}+\dfrac{5-2\sqrt{3}}{3-\sqrt{3}}\)
\(=\dfrac{\left(2-\sqrt{3}\right)\left(3-\sqrt{3}\right)+5-2\sqrt{3}}{3-\sqrt{3}}\)
\(=\dfrac{6-2\sqrt{3}-3\sqrt{3}+3+5-2\sqrt{3}}{3-\sqrt{3}}\)
\(=\dfrac{14-7\sqrt{3}}{3-\sqrt{3}}\)
d: A=2
=>\(\dfrac{x+\sqrt{x}+2\sqrt{x}+1}{\sqrt{x}+1}=2\)
=>\(x+3\sqrt{x}+1=2\left(\sqrt{x}+1\right)=2\sqrt{x}+2\)
=>\(x+\sqrt{x}-1=0\)
=>\(\left[{}\begin{matrix}\sqrt{x}=\dfrac{-1+\sqrt{5}}{2}\left(nhận\right)\\\sqrt{x}=\dfrac{-1-\sqrt{5}}{2}\left(loại\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{6-2\sqrt{5}}{4}=\dfrac{3-\sqrt{5}}{2}\)
Khi \(x=1,44\): \(A=\frac{1,44+7}{\sqrt{1,44}}=\frac{8,44}{1,2}=\frac{211}{30}\)
\(B=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}-1}{\sqrt{x}-3}-\frac{2x-\sqrt{x}-3}{x-9}\)(ĐK: \(x\ge0,x\ne9\))
\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{2x-\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{x-3\sqrt{x}+2x+5\sqrt{x}-3-2x+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{x+3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}}{\sqrt{x}-3}\)
\(S=\frac{1}{B}+A=\frac{\sqrt{x}-3}{\sqrt{x}}+\frac{x+7}{\sqrt{x}}=\frac{x+\sqrt{x}+4}{\sqrt{x}}=\sqrt{x}+\frac{4}{\sqrt{x}}+1\)
\(\ge2\sqrt{\sqrt{x}.\frac{4}{\sqrt{x}}}+1=5\)
Dấu \(=\)khi \(\sqrt{x}=\frac{4}{\sqrt{x}}\Leftrightarrow x=4\)(thỏa mãn)
a, \(\Rightarrow M=\dfrac{x}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(\Rightarrow M=\dfrac{x-4\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(\Rightarrow M=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(\Rightarrow M=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
b, \(x=3+2\sqrt{2}\Rightarrow M=\dfrac{\sqrt{3+2\sqrt{2}}-2}{\sqrt{3+2\sqrt{2}}}=\dfrac{\sqrt{2+2\sqrt{2}.1+1}-2}{\sqrt{2+2\sqrt{2}.1+1}}=\dfrac{\sqrt{2}+1-2}{\sqrt{2}+1}=\dfrac{\sqrt{2}-1}{\sqrt{2}+1}=\dfrac{\left(\sqrt{2}-1\right)^2}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\dfrac{2-2\sqrt{2}+1}{2-1}=3-2\sqrt{2}\)
c, \(M>0\Rightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}}>0\Rightarrow\sqrt{x}-2>0\Rightarrow\sqrt{x}>2\Rightarrow x>4\)
Bài 5:
a: Thay \(x=4+2\sqrt{3}\) vào E, ta được:
\(E=\dfrac{\sqrt{3}+1-1}{\sqrt{3}+1-3}=\dfrac{\sqrt{3}}{\sqrt{3}-2}=-3-2\sqrt{3}\)
b: Để E<1 thì E-1<0
\(\Leftrightarrow\dfrac{\sqrt{x}-1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)
\(\Leftrightarrow\sqrt{x}-3< 0\)
hay x<9
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)
c: Để E nguyên thì \(4⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{-2;1;2;4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{4;5;7\right\}\)
hay \(x\in\left\{16;25;49\right\}\)
Câu 2:
a) Ta có \(x=4-2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-2\right)^2}=\sqrt{3}-2\)
Thay \(x=\sqrt{3}-1\) vào \(B\), ta được
\(B=\dfrac{\sqrt{3}-1-2}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-3}{\sqrt{3}}=1-\sqrt{3}\)
b) Để \(B\) âm thì \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\) mà \(\sqrt{x}+1\ge1>0\forall x\) \(\Rightarrow\sqrt{x}-2< 0\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)
c) Ta có \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=1-\dfrac{3}{\sqrt{x}+1}\)
Với mọi \(x\ge0\) thì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\dfrac{3}{\sqrt{x}+1}\le3\Rightarrow B=1-\dfrac{3}{\sqrt{x}+1}\ge-2\)
Dấu "=" xảy ra khi \(\sqrt{x}+1=1\Leftrightarrow x=0\)
Vậy \(B_{min}=-2\) khi \(x=0\)
\(D=\sqrt{\left(x+\sqrt{3}\right)^2}+\sqrt{\left(x-\frac{1}{2}\right)^2}\)
\(D=|x+\sqrt{3}|+|x-\frac{1}{2}|=|x+\sqrt{3}|+|\frac{1}{2}-x|\ge|x+\sqrt{3}+\frac{1}{2}-x|\)
=sqrt(3)+1/2.
Vậy giá trị nhỏ nhất cần tìm là: sqrt(3)+1/2. Dấu bằng thì bạn tham khảo bất đẳng thức:
lal+lbl geq la+bl
\(ĐKXĐ:x\ge0\)
\(A=-\frac{1}{2x-3\sqrt{x}+2}\)
\(=-\frac{1}{2\left(x-\frac{3}{2}\sqrt{x}+1\right)}\)
\(=-\frac{1}{2\left(x-2.\frac{3}{4}\sqrt{x}+\frac{9}{16}-\frac{9}{16}+1\right)}\)
\(=-\frac{1}{2\left(\sqrt{x}-\frac{3}{4}\right)^2+\frac{7}{8}}\)
Ta có: \(2\left(\sqrt{x}-\frac{3}{4}\right)^2\ge0,\forall x\ge0\)
\(\Leftrightarrow2\left(\sqrt{x}-\frac{3}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\)
\(\Leftrightarrow\frac{1}{2\left(\sqrt{x}-\frac{3}{4}\right)^2+\frac{7}{8}}\le\frac{8}{7}\)
\(\Leftrightarrow\frac{-1}{2\left(\sqrt{x}-\frac{3}{4}\right)^2+\frac{7}{8}}\ge-\frac{8}{7}\)
\(\Rightarrow Min_A=-\frac{8}{7}\) khi \(\sqrt{x}-\frac{3}{4}=0\Leftrightarrow\sqrt{x}=\frac{3}{4}\Leftrightarrow x=\frac{9}{16}\)