Chứng minh rằng nếu abc chia hết cho 8 thì 4×a+2×b+c sẽ chia hết cho 8
Nhớ abc phải có gạch trên đầu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng nếu abc chia hết cho 8 thì 4×a+2×b+c sẽ chia hết cho 8
Nhớ abc phải có gạch trên đầu
a)theo cấu tạo số ta có:
__
abc=(a+b+c)x2x11. (*1)
từ (*1)ta có:abcchia hết cho11và là số chẵn
b)khi a=1,ta có:
___
1bc=(1+b+c)x22
__
100+bc=22+22 x b+22 x c
78=12x b+21x c (*2)
Vậy 78 là số chẵn ;12x b là số chẵn suy ra 21x ccũng là số chẵn.Do 2 ta thấy c phải nhỏ hơn 4
Vậy c=0 hoặc2
-khi c=0 thì 12x b=78 (không xác định được số b thỏa mãn yêu cầu 0)
-khi c=2thì 12xb+42=78
Vậy c =2
Suy ra :12xb=36 hay b=3
Ta được số cần tìm là:132
__
Vậyabc=132
1)
a) 1+5+5^2+5^3+....+5^101
=(1+5)+(5^2+5^3)+....+(5^100+5^101)
=6+5^2.(1+5)+...+5^100(1+5)
=6+5^2.6+...+5^100.6 chia hết cho 6 , vì mỗi số hạng đều chia hết cho 6
b) 2+2^2+2^3+...+2^2016
=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+1^10)+....+(2^2012+2^2013+2^2014+2^2015+2^2016)
=2.31+2^6.31+...+2^2012.31 chia hết cho 31
Tương tự như câu a lên mk rút gọn
2) còn bài a kì quá abc deg là sao nhỉ
b) abc chia hết cho 8 nên a ; b hoặc c chia hết cho 8
bạn nghĩ thử đi bài 2b dễ lắm nếu ko bt thì hỏi lại
\(1+5+5^2+5^3+...+5^{101}\)
\(=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{100}+5^{101}\right)\)
\(=1+5+5^2\left(1+5\right)+5^4\left(1+5\right)+...+5^{100}\left(1+5\right)\)
\(=6+5^2.6+5^4.6+...+5^{100}.6\)
\(\Rightarrow6+6\left(5^2+5^4+5^6+...5^{100}\right)⋮6\)
\(\Rightarrow1+5+5^2+5^3+...+5^{101}⋮6\)
Ta có:
\(\overline{abc}\)
= 100a + 10b + c
= 96a + 4a + 8b + 2b + c
= 8(12a + b) + (4a +2b + c)
Vì \(\overline{abc}\) \(⋮\) 8
\(\Rightarrow\) 8(12a + b) + (4a + 2b + c) \(⋮\) 8
Mà 8(12a + b) \(⋮\) 8
\(\Rightarrow\) 4a + 2b + c \(⋮\) 8 (đpcm)