Cho các số x, y, z dương. Chmr:
\(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Sigma\frac{x^3}{y^2}=\Sigma\frac{x}{y^2}\left(x-y\right)^2+\frac{\Sigma z\left(x^3-yz^2\right)^2}{xyz\left(x+y+z\right)}+\Sigma\frac{x^2}{y}\ge\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\)
vì x+y+z=1nên
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\)\(\frac{x+y+z}{x}+\frac{x+y+z}{y}+\frac{x+y+z}{z}\)\(=3+\left(\frac{x}{y}+\frac{y}{z}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\)=\(3+\frac{x^2+y^2}{xy}+\frac{y^2+z^2}{yz}+\frac{x^2+z^2}{xz}\)
nen \(\frac{xy}{x^2+y^2}+\frac{yz}{y^2+z^2}+\frac{xz}{x^2+z^2}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\) =\(\left(\frac{xy}{x^2+y^2}+\frac{x^2+y^2}{4xy}\right)+\left(\frac{yz}{y^2+z^2}+\frac{y^2+z^2}{4yz}\right)+\left(\frac{xz}{x^2+z^2}+\frac{x^2+z^2}{xz}\right)+\frac{3}{4}\)
\(\ge2.\frac{1}{2}+\frac{2.1}{2}+\frac{2.1}{2}+\frac{3}{4}=\frac{15}{4}\)(dpcm)
dau = xay ra khi x=y=z=1/3
Ta có \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}\)
\(\Rightarrow\frac{x^2}{y+z}+x+\frac{y^2}{x+z}+y+\frac{z^2}{x+y}+z\ge\frac{x+y+z}{2}+x+y+z\)
\(\Rightarrow x\left(\frac{x}{y+z}+1\right)+y\left(\frac{y}{x+z}+1\right)+z\left(\frac{z}{x+y}+1\right)\ge\frac{3}{2}\left(x+y+z\right)\)
\(\Rightarrow x\left(\frac{x+y+z}{y+z}\right)+y\left(\frac{y+x+z}{x+z}\right)+z\left(\frac{z+x+y}{x+y}\right)\ge\frac{3}{2}\left(x+y+z\right)\)
\(\Rightarrow\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)\ge\frac{3}{2}\left(x+y+z\right)\)
\(\Rightarrow\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\ge\frac{3}{2}\) (Theo BĐT Nesbitt )
\(\Rightarrow\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\ge\frac{3}{2}\) (đpcm)
Đặt \(P=\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Do x,y,z là các số thực dương nên ta biến đổi \(P=\frac{1}{\sqrt{1+\frac{1}{x^2}}}+\frac{1}{\sqrt{1+\frac{1}{y^2}}}+\frac{1}{\sqrt{1+\frac{1}{z^2}}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Đặt \(a=\frac{1}{x^2};b=\frac{1}{y^2};c=\frac{1}{z^2}\left(a,b,c>0\right)\)thì \(xy+yz+zx=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}=1\)và \(P=\frac{1}{\sqrt{1+a}}+\frac{1}{\sqrt{1+b}}+\frac{1}{\sqrt{1+c}}+a+b+c\)
Biến đổi biểu thức P=\(\left(\frac{1}{2\sqrt{a+1}}+\frac{1}{2\sqrt{a+1}}+\frac{a+1}{16}\right)+\left(\frac{1}{2\sqrt{b+1}}+\frac{1}{2\sqrt{b+1}}+\frac{b+1}{16}\right)\)\(+\left(\frac{1}{2\sqrt{c+1}}+\frac{1}{2\sqrt{c+1}}+\frac{c+1}{16}\right)+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{b}-\frac{3}{16}\)
Áp dụng Bất Đẳng Thức Cauchy ta có
\(P\ge3\sqrt[3]{\frac{a+1}{64\left(a+1\right)}}+3\sqrt[3]{\frac{b+1}{64\left(b+1\right)}}+3\sqrt[3]{\frac{c+1}{64\left(c+1\right)}}+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{16}-\frac{3}{16}\)
\(=\frac{33}{16}+\frac{15}{16}\left(a+b+c\right)\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{abc}\)
Mặt khác ta có \(1=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\ge3\sqrt[3]{\frac{1}{abc}}\Leftrightarrow abc\ge27\)
\(\Rightarrow P\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{27}=\frac{33}{16}+\frac{15}{16}\cdot9=\frac{21}{2}\)
Dấu "=" xảy ra khi a=b=c hay \(x=y=z=\frac{\sqrt{3}}{3}\)
Lời giải:
Xét hiệu:
\(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}-\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)=\frac{1}{2}\left[\left(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\right)+\left(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\right)-2\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)\right]\)
\(\ge \frac{1}{2}\left[\left(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\right)+3\sqrt[3]{\frac{x^2}{y^2}.\frac{y^2}{z^2}.\frac{z^2}{x^2}}-2\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)\right]\)
\(=\frac{1}{2}\left[\left(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\right)+3-2\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)\right]\)
\(=\frac{1}{2}\left[(\frac{x}{y}-1)^2+(\frac{y}{z}-1)^2+(\frac{z}{x}-1)^2\right]\geq 0\)
\(\Rightarrow \frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\geq \frac{x}{y}+\frac{y}{z}+\frac{z}{x}\) (đpcm)
Dấu "=" xảy ra khi $x=y=z$
Ta có \(VT=\frac{x}{1-x^2}+\frac{y}{1-y^2}+\frac{z}{1-z^2}\)
Lại có \(x^2\left(1-x^2\right)^2=\frac{2x^2\left(1-x^2\right)\left(1-x^2\right)}{2}\le\frac{\left(2x^2+1-x^2+1-x^2\right)^3}{54}=\frac{4}{27}\)
\(\Leftrightarrow\) \(x\left(1-x^2\right)\le\frac{2}{3\sqrt{3}}\) \(\Leftrightarrow\) \(\frac{1}{x\left(1-x^2\right)}\ge\frac{3\sqrt{3}}{2}\) \(\Leftrightarrow\) \(\frac{x}{\left(1-x^2\right)}\ge\frac{3\sqrt{3}}{2}x^2\) (1)
Tương tự cho \(\frac{y}{\left(1-y^2\right)}\ge\frac{3\sqrt{3}}{2}y^2\) (2) và \(\frac{z}{\left(1-z^2\right)}\ge\frac{3\sqrt{3}}{2}z^2\) (3)
Cộng vế theo vế ta được \(VT=\frac{x}{1-x^2}+\frac{y}{1-y^2}+\frac{z}{1-z^2}\ge\frac{3\sqrt{3}}{2}\left(x^2+y^2+z^2\right)=\frac{3\sqrt{3}}{2}\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{\sqrt{3}}{3}\)
Trước hết ta chứng minh bổ đề sau đây: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{9\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\). Đặt P = VT - VP.
(đây là phân tích của một người khác, không phải của em)
Do đó \(VT=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge\frac{9\left(x^2+y^2+z^2\right)}{\left(x+y+z\right)^2}=\frac{27}{\sqrt{\left(x+y+z\right)^2.\left(x+y+z\right)^2}}\)
\(\ge\frac{27}{\sqrt{3\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2}}=\frac{9}{x+y+z}\)
Đẳng thức xảy ra khi x = y = z = 1
P/s: Em không chắc lắm!
Theo giả thiết: \(x^2+y^2+z^2=3\Rightarrow2\left(xy+yz+zx\right)=\left(x+y+z\right)^2-3\)
Theo BĐT Bunyakovsky dạng phân thức, ta có:
\(VT=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=\frac{x^2}{xy}+\frac{y^2}{yz}+\frac{z^2}{zx}\)\(\ge\frac{\left(x+y+z\right)^2}{xy+yz+zx}=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-3}\)
Đến đây, ta cần chỉ ra rằng \(\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-3}\ge\frac{9}{x+y+z}\)(*)
Ta có: \(xy+yz+zx>0\Leftrightarrow\left(x+y+z\right)^2\ge x^2+y^2+z^2=3\)
\(\Rightarrow x+y+z>\sqrt{3}\)
Đặt \(x+y+z=t>\sqrt{3}\). Khi đó (*) trở thành \(\frac{2t^2}{t^2-3}\ge\frac{9}{t}\Leftrightarrow\frac{\left(t-3\right)^2\left(2t+3\right)}{t\left(t^2-3\right)}\ge0\)(đúng với mọi \(t>\sqrt{3}\))
Đẳng thức xảy ra khi \(t=3\)hay x = y = z = 1
\(\frac{x^3}{x^2+y^2}=x-\frac{xy^2}{x^2+y^2}\ge x-\frac{xy^2}{2xy}=x-\frac{y}{2}\)
Tương tự ta có:
\(\frac{y^3}{y^2+z^2}\ge y-\frac{z}{2}\) ; \(\frac{z^3}{z^2+x^2}\ge z-\frac{x}{2}\)
Cộng vế với vế:
\(VT\ge x+y+z-\frac{1}{2}\left(x+y+z\right)=\frac{1}{2}\left(x+y+z\right)=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z=1\)
+\(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=3\)
+\(3+2\left(xy+yz+zx\right)=x^2+y^2+z^2+2\left(xy+yz+zx\right)=\left(x+y+z\right)^2\le9\)
\(\Rightarrow B=\frac{1}{1+\sqrt{3+2\left(xy+yz+zx\right)}}\ge\frac{1}{1+3}=\frac{1}{4}\)
+\(A=\frac{x^2}{y+2z}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}=\frac{x^4}{x^2y+2zx^2}+\frac{y^4}{y^2z+2xy^2}+\frac{z^4}{z^2x+2yz^2}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2z+z^2x+2\left(xy^2+yz^2+zx^2\right)}\)
Áp dụng bđt Bunhiacopxki
\(x^2y+y^2z+z^2x=x.xy+y.yz+z.zx\le\sqrt{x^2+y^2+z^2}.\sqrt{x^2y^2+y^2z^2+z^2x^2}\)
\(\le\sqrt{x^2+y^2+z^2}.\sqrt{\frac{\left(x^2+y^2+z^2\right)^2}{3}}=3\)
(áp dụng \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\))
Tương tự: \(xy^2+yz^2+zx^2\le3\)
\(\Rightarrow B\ge\frac{3^2}{3+2.3}=1\)
\(VT=A+B\ge1+\frac{1}{4}=\frac{5}{4}=VP\)
Áp dụng BĐT Cauchy:
\(\frac{x^2}{y^2}+1+\frac{y^2}{z^2}+1+\frac{z^2}{x^2}+1\ge2\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)=\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)+\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)\)
\(\Rightarrow\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}+3\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+3\sqrt[3]{\frac{xyz}{xyz}}=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+3\)
\(\Rightarrow\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)