Tìm \(n\) \(\in\) \(N\) \(để:\)
2n + 1 chia hết cho n - 3
3n + 2 chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(3n-1⋮n+3\)
\(\Leftrightarrow3n+9-10⋮n+3\)
mà \(3n+9⋮n+3\)
nên \(-10⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(-10\right)\)
\(\Leftrightarrow n+3\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
hay \(n\in\left\{-2;-4;-1;-5;2;-8;7;-13\right\}\)
Vậy: \(n\in\left\{-2;-4;-1;-5;2;-8;7;-13\right\}\)
a: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{0;-1;1;-2\right\}\)
b: \(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
c: \(\Leftrightarrow10n^2-15n+8n-12+7⋮2n-3\)
\(\Leftrightarrow2n-3\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;1;5;-2\right\}\)
d: \(\Leftrightarrow2n^2-n+4n-2+5⋮2n-1\)
\(\Leftrightarrow2n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{1;0;3;-2\right\}\)
=>(n2+3n)+(3n+9)+2 chia hết cho n+3
=>n(n+3)+3(n+3)+2 chia hết cho n+3
=>(n+3)(n+3)+2 chia hết cho n+3
Mà (n+3)(n+3) chia hết cho n+3
=>2 chia hết cho n+3
=> n+3 thuộc Ư(2)={1;2;-1;-2}
=>n thuộc {-2;-1;-4;-5}
Để A nguyên
=>n2-3n+1 chia hết cho n+1
=>(n2-1)-(3n+3)+1+1-3 chia hết cho n+1
=>(n-1)(n+1)-3(n+1)-1 chia hết cho n+1
Mà (n-1)(n+1) và 3(n+1) chia hết cho n+1
=>1 chia hết cho n+1
=>n+1 thuộc Ư(1)={1;-1}
=>n thuộc {0;-2}
Xét phân số \(A=\dfrac{n+2}{n-4}\)
\(A=\dfrac{n-4+6}{n-4}=\dfrac{n-4}{n-4}+\dfrac{6}{n-4}=1+\dfrac{6}{n-4}\)
Để n+2 chia hết cho n-4 thì A là số nguyên => n-4 thuộc Ư(6)={-1,-2,-3,-6,1,2,3,6}
n-4 | -1 | -2 | -3 | -6 | 1 | 2 | 3 | 6 |
n | 3 | 2 | 1 | -2 | 5 | 6 | 7 | 10 |
Vậy...
---------------------------------------
Xét phân số \(B=\dfrac{2n+5}{n+1}\)
\(B=\dfrac{2n+2+3}{n+1}=\dfrac{2\left(n+1\right)+3}{n+1}=\dfrac{2\left(n+1\right)}{n+1}+\dfrac{3}{n+1}=2+\dfrac{3}{n+1}\)
Để 2n+5 chia hết cho n+1 thì B là số nguyên => n+1 thuộc Ư(3) = {-1,-3,1,3}
n+1 | -1 | -3 | 1 | 3 |
n | -2 | -4 | 0 | 2 |
Vậy....
n + 2 = n - 4 + 6
Để n + 2 chia hết cho n - 4 thì 6 chia hết cho n - 4
⇒ n - 4 ∈ Ư(6) = {-6; -3; -2; -1; 1; 2; 3; 6}
n ∈ {-2; 1; 2; 3; 5; 6; 7; 10}
b) ( 2n + 9 ) chia hết cho ( n + 1 )
=> 2n + 2 + 7 chia hết cho ( n + 1 )
=> 2 . ( n + 1 ) chia hết cho ( n + 1 ) mà 2 . ( n + 1 ) chia hết cho ( n + 1 )
=> 7 chia hết cho ( n + 1 ) => ( n + 1 ) thuộc Ư ( 7 ) = { 1 , 7 }
Vậy n thuộc { 1 , 7 }
Ta có :2n+1=2n-6+7
mà 2n-6 chia hết cho n-3
=>7 chia hết cho n-3
=>n-3 thuộc Ư(7)={1;7}
Nếu n-3=1 thì n=4
Nếu n-3=7 thì n=10
Vậy n thuộc {4;10}