K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2019

th1 a/b >a+1/b+1                                                                                                                                                                                                     th2 a/b < a+1/b+1                                                                                                                                                        

18 tháng 4 2016

Đặt \(m=1-x=1-\frac{a+1}{a^2+a+1}=\frac{a^2+a+1-a-1}{a^2+a+1}=\frac{a^2}{a^2+a+1}\)

\(n=1-y=1-\frac{b+1}{b^2+b+1}=\frac{b^2+b+1-b-1}{b^2+b+1}=\frac{b^2}{b^2+b+1}\)

=>\(m:n=\frac{a^2}{a^2+a+1}:\frac{b^2}{b^2+b+1}\)

=>\(m:n=\frac{a^2}{a^2+a+1}.\frac{b^2+b+1}{b^2}\)

=>\(m:n=\frac{a^2.\left(b^2+b+1\right)}{\left(a^2+a+1\right).b^2}\)

=>\(m:n=\frac{a^2.b^2+a^2.b+a^2}{a^2.b^2+a.b^2+b^2}\)

=>\(m:n=\frac{a^2.b^2+ab.a+a^2}{a^2.b^2+ab.b+b^2}\)

Vì \(a>b=>ab.a>ab.b;a^2>b^2\)

=>\(a^2.b^2+ab.a+a^2>a^2.b^2+ab.b+b^2\)

=>\(\frac{a^2.b^2+ab.a+a^2}{a^2.b^2+ab.b+b^2}>1\)

=>m:n>1

=>m:n

=>1-x>y-y

=>x<y

Vậy x<y

24 tháng 8 2016

1) Áp dụng a/b < 1 <=> a/b < a+n/b+n (a,b,n thuộc N*)

a/b = 1 <=> a/b = a+n/b+n (a,b,n thuộc N*)

a/b > 1 <=> a/b > a+n/b+n (a,b,n thuộc N*)

+ Với a/b < 1 <=> a/b < a+1/b+1

+ Với a/b = 1 <=> a/b = a+1/b+1

+ Với a/b > 1 <=> a/b > a+1/b+1

2) lm tương tự bài 1

24 tháng 8 2016

1) Trường hợp a cũng là nguyên duơng 
Xét a<b và a>b. 
Xét a<b trước, ta có: 
1-a/b=(b-a)/a..............(1) 
1-(a+1)/(b+1)=(b+1-a-1)/(b+1)=(b-a/(b+1... 
Từ (1) và (2) ta thấy: (b-a)/a<(b-a)/(b+1) (vì hai phân số có cùng tử phân số nào mẫu lớn thì phân số đó nhỏ hơn). Mà (b-a)/a>(b-a)/(b+1) =>((a+1)/(b+1)<a/b 

13 tháng 6 2016

Xét hiệu:

\(H=\frac{a}{b}-\frac{a+1}{b+1}=\frac{a\left(b+1\right)-b\left(a+1\right)}{b\left(b+1\right)}=\frac{a-b}{b\left(b+1\right)}.\)

Vì b>0 => b+1>0. Do đó:

  • Nếu a>b thì H>0 hay: \(\frac{a}{b}>\frac{a+1}{b+1}\)
  • Nếu a<b thì H<0 hay: \(\frac{a}{b}< \frac{a+1}{b+1}\)
  • Nếu a=b thì H=0 hay: \(\frac{a}{b}=\frac{a+1}{b+1}\)