\(\left(2x+1\right)^2+2\left(2x+1\right)\)
phan tich da thuc thanh nhan tu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a :
\(\left(x-5\right)^2+\left(x-5\right)\left(x+5\right)-\left(5-x\right)\left(2x+1\right)\)
\(=x^2-10x+25+x^2-25-10x-5+2x^2+x\)
\(=4x^2-19x-5\)
Câu b :
\(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)
\(=12x^2-9x-8x+6-2x+2+3x^2-3x-6x^2-6x+4x+4\)
\(=9x^2-24x+2\)
PTĐTTNT ??? :)) bn phân tích rồi đấy, đề là tìm x thôi
Giải ( suỵt :), đừng ai nhìn thấy ... :v
\(\left(2x-10\right)\left(x+10\right)\left(x+\sqrt{3}\right)=0\)
TH1 : \(2x-10=0\Leftrightarrow x=5\)
TH2 : \(x+10=0\Leftrightarrow x=-10\)
TH3 : \(x+\sqrt{3}=0\Leftrightarrow x=-\sqrt{3}\)( vô lí )
Vậy x = {5;-10}
\(9\left(x+1\right)^2-\left(3x-2\right)^2\)
\(=9\left(x^2+2x+1\right)-\left(9x^2-12x+4\right)\)
\(=9x^2+18x+9-9x^2+12x-4\)
\(=30x+5\)
\(=5\left(6x+1\right)\)
\(9\left(x+1\right)^2-\left(3x-2\right)^2\)
\(=\left[3\left(x+1\right)+3x-2\right]\left[3\left(x+1\right)-3x+2\right]\)
\(=\left(3x+3+3x-2\right)\left(3x+3-3x+2\right)\)
\(=5\left(6x+1\right)\)
(x -y)3 - 1 - 3(x -y)(x - y - 1)
= (x -y)3 - 3(x -y)(x - y - 1) - 1
Đặt x - y = t, khi đó ta có:
t3 - 3t. (t - 1) - 1
= t3 - 3t2 + 3t - 1
= (t - 1)3
Thay t = x - y vào (t - 1)3 , ta có: ( x - y - 1)3
Vậy (x -y)3 - 1 - 3(x -y)(x - y - 1) = ( x - y - 1)3
\(\left(a+b+c\right)^2+\left(a+b-c\right)^2-4c^2\)
\(=\left[\left(a+b+c\right)^2-\left(2c\right)^2\right]+\left(a+b-c\right)^2\)
\(=\left(a+b+3c\right)\left(a+b-c\right)+\left(a+b-c\right)^2\)
\(=\left(a+b-c\right)\left(a+b+3c+a+b-c\right)\)
\(=\left(a+b-c\right)\left(2a+2b+2c\right)\)
\(=2\left(a+b-c\right)\left(a+b+c\right)\)
\(=\left(a+b\right)^2+2\left(a+b\right)c+c^2+\left(a+b\right)^2-2\left(a+b\right)c+c^2-4c^2\)
\(=2\left(a+b\right)^2-2c^2=2\left[\left(a+b\right)^2-c^2\right]=2\left(a+b+c\right)\left(a+b-c\right)\)
Mình đã làm bài này rồi.
Link: https://hoc24.vn/hoi-dap/question/824554.html
\(=\left(2x+1\right)^2+2\left(2x+1\right)=\left(2x+1\right)\left(2x+1+2\right)=\left(2x+1\right)\left(2x+3\right)\)
\(\)