Chứng minh rằng :
S=5+5^2+5^3+....+5^30chia hết cho 30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(5+5^2+5^3+.....+5^{12}=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{11}+5^{12}\right)\)
\(=30.1+5^2.30+.....+5^{10}.30=30.\left(1+5^2+....+5^{10}\right)\)
Vậy chia hết cho 30
\(5+5^2+5^3+....+5^{12}=\left(5+5^2+5^3\right)+.....+\left(5^{10}+5^{11}+5^{12}\right)\)
\(=5.31+5^4.31+....+5^{10}.31=31.\left(5+5^4+....+5^{10}\right)\)
Vậy chia hết cho 31
1:\(A=1+3+3^2+3^3+...+3^{11}\)
\(A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\)
\(A=4+3^2\cdot\left(1+3\right)+...+3^{10}\cdot\left(1+3\right)\)
\(A=4+3^2\cdot4+....+3^{10}\cdot4\)
\(A=4\cdot\left(1+3^2+...+3^{10}\right)\) chia hết cho 4
Vì ta có 4 chia hết cho 4 => A có chia hết cho 4
Vậy A chia hết cho 4
2:
\(C=5+5^2+5^3+...+5^8\) chia hết cho 30
\(C=\left(5+5^2\right)+...+\left(5^7+5^8\right)\)
\(C=30+5^2\cdot\left(5+5^2\right)+...+5^6\cdot\left(5+5^2\right)\)
\(C=30\cdot1+5^2\cdot30+...5^6\cdot30\)
\(C=30\cdot\left(5^2+...+5^6\right)\)
Vì ta có 30 chia hết cho 30 nên suy ra C có chia hết cho 30
Vậy C có chia hết cho 30
a) \(S=5+5^2+...+5^{2006}\)
\(5S=5^2+5^3+...+5^{2007}\)
\(5S-S=5^2+5^3+...+5^{2007}-5-5^2-...-5^{2006}\)
\(4S=5^{2007}-5\)
\(S=\dfrac{5^{2007}-5}{4}\)
b) Ta có:
\(S=5+5^2+...+5^{2006}\)
\(S=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2005}+5^{2006}\right)\)
\(S=\left(5+25\right)+5^2\cdot\left(5+25\right)+...+5^{2004}\cdot\left(5+25\right)\)
\(S=30+5^2\cdot30+...+5^{2004}\cdot30\)
\(S=30\cdot\left(1+5^2+...+5^{2004}\right)\)
Vậy: S ⋮ 30
Bài 3:
\(A=5+5^2+..+5^{12}\)
\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)
\(5A=5^2+5^3+...+5^{13}\)
\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)
\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)
\(4A=5^{13}-5\)
\(A=\dfrac{5^{13}-5}{4}\)
- cho S = 5+ 5^2 + 5^3 + 5^4+ 5^5+.......+5^2004
- chứng minh S chia hết cho 30 và chia hết cho 126.
S = 5+52+53+54+....+52004
S = (5+52)+(53+54)+...+(52003+52004)
S = 1(5+52)+52(5+52)+.....+52002(5+52)
S = 1.30 + 52.30 +.....+52002.30
S = 30.(1+52+....+52002) chia hết cho 30
=> S chia hết cho 30 (Đpcm)
Ta có S có 30 số hạng mà 30 chia hết cho 2 nên ta nhóm như sau
\(S=\left(5+5^2\right)+\left(5^3+5^4\right)+...\left(5^{29}+5^{30}\right)\)
\(S=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{28}\left(5+5^2\right)\)
\(S=30+5^2\times30+...+5^{28}\times30⋮30\left(ĐPCM\right)\)