Cho ∆ABC cân tại B . M,N là trung điểm của AB, BC
a) Tính AC biết MN=4cm
b) I là trung điểm của AC . Chứng minh tứ giác AMNC là hình thang cân
c) Cm : B đối xứng với I qua MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. MN = ?
Trong ΔABC có:
M là trung điểm AB (gt)
N là trung điểm AC (gt)
⇒ MN là đường trung bình ΔABC
⇒ MN = 1/2BC (t/c)
Mà BC = 6cm (gt)
⇒ MN=BC/2=6/2=3(cm)
b. C/m: BMNC là hình thang cân
Có MN là đường trung bình ΔABC
⇒ MN//BC
⇒ BMNC là hình thang
Mà góc ABC = góc ACB (ΔABC cân tại A)
⇒ BMNC là hình thang cân (DHNB)
c. C/m: ABCK là hình bình hành
Xét tứ giác ABCK có:
N là trung điểm AC (gt)
N là trung điểm BK (K đ/x với B qua M)
⇒ ABCK là hình bình hành (DHNB)
d. C/m: AHBP là hình chữ nhật
Xét tứ giác AHBP có:
M là trung điểm AB (gt)
M là trung điểm PH ( H đ/x với P qua M)
⇒ AHBP là hình bình hành (DHNB)
Có ΔABC cân tại A
⇒ AP là trung tuyến đồng thời là đg cao
⇒ góc APB = 90 độ
⇒ AHBP là hình chữ nhật (DHNB)
Bài 1 : Bạn tự vẽ hinh
a,
I là trung điểm AC và IN//AB nên IN là đường trung bình trong tam giác ABC
Suy ra N là trung điểm BC
I là trung điểm AC và IM//BC nên IM là đường trung bình trong tam giác ABC
Suy ra M là trung điểm BA
Do đó MN là đường trung bình của tam giác ABC nên MN//AC và MN=1/2 AC=5 (cm)
b,
MN// AC nên AMNC là hình thang
Mặt khác AM=1/2AB=1/2BC=CN
MN<AC nên AMNC là hình thang cân
IN //AB hay IN//BM
IM//BC hay IM//BN nên IMBN là hình bình hành
Mặt khác ABC cân tại B nên BI vuông góc với AC hay BI vuông góc với MN
Do đó IMBN là hình thoi
c,
IMBN là hình thoi nên O là trung điểm IB và MN
Tứ giác BICK có hai đường chéo BC và IK cắt nhau tại trung điểm mỗi đường nên BICK là hình bình hành
Do đó BK//IC//AI và BK=IC=IA
hay ABKI là hình bình hành
O là trung điểm của BI nên O cũng là trung điểm AK
Do vậy A,O,K thẳng hàng
a) Ta có I là trung điểm AC; IN//AB
=> IN là đường trung bình \(\Delta\)ABC
=> N là trung điểm BC
Cmtt: M là trung điểm AB
=> MN là đường trung bình \(\Delta\)ABC
=> MN//AC và \(MN=\frac{1}{2}AC=\frac{1}{2}\cdot10=5\left(cm\right)\)
b) Tứ giác AMNC có: MN//AC
=> Tứ giác AMNC là hình thang
Lại có: \(AM=\frac{1}{2}AB\)(do M là trung điểm AB)
\(AN=\frac{1}{2}CB\)(Do N là trung điểm AC)
\(AB=\frac{1}{2}CB\)(do \(\Delta\)ABC cân tại B)
=> AMNC là hình thang cân
Tứ giác IMBN có: IM//BN và IN//BM
=> Tứ giác IMBN là hình bình hành
Lại có MB=BN\(\left(=\frac{1}{2}AD=\frac{1}{2}BC\right)\)
=> IMBN là hình thoi
c) N là trung điểm IK và O là trung điểm BI
=> ON là đường trung bình của \(\Delta\)IBK
=> ON//BK và ON//AI
=> BK//AI
IN//AB => IK//AB
=> Tứ giác ABKI là hình bình hành
Có D là trung điểm BI
=> O là trung điểm của AK
=> O;A;K thẳng hàng
a) Xét ΔABC có
M là trung điểm của AB(gt)
N là trung điểm của BC(gt)
Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)
hay \(MN=\dfrac{8}{2}=4\left(cm\right)\)
Xét tứ giác ACNM có NM//AC(cmt)
nên ACNM là hình thang có hai đáy là NM và AC(Định nghĩa hình thang)
Hình thang ACNM có \(\widehat{CAM}=90^0\)(gt)
nên ACNM là hình thang vuông(Định nghĩa hình thang vuông)
b) Xét tứ giác ABDC có
N là trung điểm của đường chéo BC(gt)
N là trung điểm của đường chéo AD(gt)
Do đó: ABDC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
mà \(\widehat{CAB}=90^0\)(gt)
nên ABDC là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Tự vẽ hình nhé bạn.
a) Ta có :
M là trung điểm AB
N là trung điểm BC
\(\Rightarrow\)MN là đường trung bình trong \(\Delta\)ABC
Do đó : MN = AC / 2 hay AC = 2MN = 2.4 = 8cm
b) Vì MN là đường trung bình của \(\Delta\)ABC
\(\Rightarrow\)MN // AC ( * )
Vì \(\Delta\)ABC cân tại B nên  = góc C ( ** )
Từ ( * ) và ( ** ) \(\Rightarrow\)Tứ giác AMNC là hình thang cân
c) Ta có :
Mà AB = AC ( \(\Delta\)ABC cân tại B )
\(\Rightarrow\)BM = BN nên B nằm trên đường trùg trực của MN ( 1 )
Tương tự chứng minh, ta được :
MI = NI nên I nằm trên đường trung trực của MN ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)BI là đường trung trực của MN ( 3 )
Vì \(\Delta\)ABC cân tại B có BI là đường trung tuyến nên BI cũng đường cao
\(\Rightarrow\)BI \(\perp\)MN ( 4 )
Từ ( 3 ) và ( 4 ) \(\Rightarrow\)B đối xứng với I qua MN
Cho Mình Nhé ~ Thanks ~♤♤