K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 1 2023

Lời giải:
a.

$S=3^0+3^2+3^4+...+3^{2002}$

$3^2S=3^2+3^4+3^6+...+3^{2004}$

$3^2S-S=(3^2+3^4+3^6+...+3^{2004})-(3^0+3^2+3^4+...+3^{2002})$

$8S=3^{2004}-3^0=3^{2004}-1$

$S=\frac{3^{2004}-1}{8}$
b.

$S=(3^0+3^2+3^4)+(3^6+3^8+3^{10})+....+(3^{1998}+3^{2000}+3^{2002})$

$=(3^0+3^2+3^4)+3^6(3^0+3^2+3^4)+....+3^{1998}(3^0+3^2+3^4)$

$=(3^0+3^2+3^4)(1+3^6+...+3^{1998})$

$=91(1+3^6+...+3^{1998})=7.13(1+3^6+...+3^{1998})\vdots 7$

Ta có đpcm.

3 tháng 10 2021

\(B=3^0+3^1+3^2...+3^{100}\)

\(=3^0\times\left(1+3^1+3^2\right)+3^3\times\left(1+3^1+3^2\right)+...+3^{98}\times\left(1+3^1+3^2\right)\)

\(=3^0\times13+3^3\times13+...+3^{98}\times13\)

\(=13\times\left(3^0+3^3+...+3^{98}\right)⋮13\)

3 tháng 10 2021

B=30+31+32...+3100

=30×(1+31+32)+33×(1+31+32)+...+398×(1+31+32)

=30×13+33×13+...+398×13

21 tháng 10 2016

b) A=m3+3m2-m-3

=(m-1)(m2+m+1) +m(m-1) +2(m-1)(m+1)

=(m-1)(m2+m+1+m+2m+2)

=(m-1)(m2+4m+4-1)

=(m-1)[ (m+2)2-1 ]

=(m-1)(m+1)(m+3)

với m là số nguyên lẻ

=> m-1 là số chẵn(nếu gọi m là 2k-1 thì 2k-1-1=2k-2=2(k-1)(chẵn)

    m+1 là số chẵn (tương tự 2k11+1=2k(chẵn)

    m+3 là số chẵn (tương tự 2k-1+3=2k++2=2(k+2)(chẵn)

ta có:gọi m là 2k-1 thay vào A ta có:(với k là số nguyên bất kì)

A=(2k-2)2k(2k+2)

=(4k2-4)2k

=8k(k-1)(k+1)

k-1 ;'k và k+1 là 3 số nguyên liên tiếp

=> (k-1)k(k+1) sẽ chia hết cho 6 vì trong 3 số liên tiếp luôn có ít nhất 1 số chia hết cho 2 , 1 số chia hết cho 3

=> tích (k-1)k(k+1) luôn chia hết cho 6

=> A=8.(k-1)(k(k+1) luôn chia hết cho (8.6)=48

=> (m3+3m3-m-3) chia hết cho 48(đfcm)

21 tháng 10 2016

ở lớp 8 ta có chứng minh rằng 3 số tự nhiên liên tiếp luôn chia hết cho 6 rồi đó ở trong sbt toán 8

HQ
Hà Quang Minh
Giáo viên
10 tháng 1

\(\begin{array}{l}a)M = {32^{2023}} - {32^{2021}}\\M = {32^{2021}}\left( {{{32}^2} - 1} \right)\\M = {32^{2021}}.1023\end{array}\)

Vì \(1023 \vdots 31\) nên \(M = \left( {{{32}^{2021}}.1023} \right) \vdots 31\)

Vậy M chia hết cho 31.

\(\begin{array}{l}b)N = {7^6} + {2.7^3} + {8^{2022}} + 1\\N = {\left( {{7^3}} \right)^2} + {2.7^3} + 1 + {8^{2022}}\\N = {\left( {{7^3} + 1} \right)^2} + {8^{2022}}\\N = {\left( {344} \right)^2} + {8^{2022}}\\N = {\left( {8.43} \right)^2} + {8^{2022}}\\N = {8^2}\left( {{{43}^2} + {8^{2020}}} \right)\end{array}\)

Vì \({8^2} \vdots 8\) suy ra \(N = {8^2}\left( {{{43}^2} + {8^{2020}}} \right) \vdots 8\)

Vậy N chia hết cho 8

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

Câu 1: 

$A=(2+2^2)+(2^3+2^4)+(2^5+2^6)+....+(2^{2019}+2^{2020})$

$=2(1+2)+2^3(1+2)+2^5(1+2)+....+2^{2019}(1+2)$

$=(1+2)(2+2^3+2^5+...+2^{2019})=3(2+2^3+2^5+...+2^{2019})\vdots 3$

-----------------

$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{2018}+2^{2019}+2^{2020})$

$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{2018}(1+2+2^2)$

$=2+(1+2+2^2)(2^2+2^5+....+2^{2018})$

$=2+7(2^2+2^5+...+2^{2018})$

$\Rightarrow A$ chia $7$ dư $2$.

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

Câu 2:

$B=(3+3^2)+(3^3+3^4)+....+(3^{2021}+3^{2022})$
$=3(1+3)+3^3(1+3)+...+3^{2021}(1+3)$

$=(1+3)(3+3^3+...+3^{2021})=4(3+3^3+....+3^{2021})\vdots 4$

-------------------

$B=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^{2020}+3^{2021}+3^{2022})$

$=3(1+3+3^2)+3^4(1+3+3^2)+....+3^{2020}(1+3+3^2)$

$=(1+3+3^2)(3+3^4+...+3^{2020})=13(3+3^4+...+3^{2020})\vdots 13$ (đpcm)

12 tháng 12 2021

Bài 1:

\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)

\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)

12 tháng 12 2021

Bài 2:

\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)

27 tháng 11 2015

7A=7+7^2+7^3+....+7^32

=(7+7^2+7^3+7^4)+....+(7^29+7^30+7^31+7^32)

=(7+7^2+7^3+7^4)+.....+7^28x(7+7^2+7^3+7^4)

=2800+......+7^28x2800

=2800x(1+7^4+....+7^28)chia hết cho 25(vì 2800 chia hết cho 25)

31 tháng 10 2021

b: \(S=\left(3^0+3^2+3^4\right)+...+3^{1998}\left(3^0+3^2+3^4\right)\)

\(=91\cdot\left(1+...+3^{1998}\right)⋮7\)