CHO Tam giác abc m là tđ bc n là tđ ab vẽ tia bm trên bm lấy điểm d sao cho ADB=mbc.trên tiabn lấy điểm e sao cho aen=ncb.chứng tỏ a e đ thẳng hành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\widehat{ADB}=\widehat{MBC}\) Hai góc trên ở vị trí so le trong => AD//BC
\(\widehat{AEN}=\widehat{NCB}\) Hai góc trên ở vị trí so le trong => AE//BC
\(\Rightarrow AD\equiv AE\) (Từ 1 điểm ở ngoài 1 đường thẳng đã cho chỉ dựng được duy nhất 1 đường thẳng // với đường thẳng cho trước)
=> E; A; D thẳng hàng
ta có góc MBC = góc MDA (giả thiết ) mà B,M, D thẳng hàng
góc MBC và góc MDA ở vị trí so le => AD//BC (1)
C/m tương tự ta cũng có AE //BC (2)
- do M là trung điểm của AC, N là trung điểm của AB => MN là đường trung bình của tam giác ABC => MN //BC (3)
từ (1),(2) và (3) =>AE//NM, AD//NM
-góc EAN = ANM (so le)
góc DAM = AMN (so le)
góc EAD = góc EAN +góc DAM +góc NAM
= góc ANM +góc AMN + góc NAM
=180 độ( tổng 3 góc trong 1 tam giác bằng 180 )
vậy goc EAD =180 độ => E,A, D thẳng hàng
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=10^2-6^2=64\)
hay AC=8cm
mà AD=AC
nên AD=8cm
b: Xét ΔBCD có
BA là đường trung tuyến ứng với cạnh CD
\(BM=\dfrac{2}{3}BA\)
Do đó: M là trọng tâm của ΔBCD
Suy ra: DM là đường trung tuyến ứng với cạnh BC
mà DE là đường trung tuyến ứng với cạnh BC
và DM,DE có điểm chung là D
nên D,M,E thẳng hàng
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2\)
\(\Leftrightarrow AC^2=10^2-6^2=64\)
hay AC=8cm
mà AD=AC
nên AD=8cm