Tam giác ABC nhọn góc A= 60 độ. M thuộc BC. Đ đối xứng M qua AB. E đối xứng M qua AC. .
Xác định M trên BC để DE nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\widehat{DAB}=\widehat{MAB}\) , \(\widehat{EAC}=\widehat{MAC}\) (do tính chất đối xứng)
=> \(\widehat{DAE}=2.\widehat{BAC}\) là đại lượng không đổi khi M di chuyển trên BC.
=> \(DE^2=AD^2+AE^2-2.AD.AE.\cos\widehat{DAE}\)
Mà AD = AE = AM
=> \(DE^2=AM^2+AM^2-2.AM.AM.\cos\left(2.\widehat{BAC}\right)\)
\(=2.AM^2\left[1-\cos2\widehat{BAC}\right]\)
=> DE nhỏ nhất khi AM nhỏ nhất => M là chân đường cao hạ từ A xuống BC
a.Tam giác AMD có AB vừa là đường trung tuyến vừa là đường cao
=> Tam giác AMD cân tại A
=> AB cũng đồng thời là đường phân giác của tam giác AMD
=> góc MAB = góc BAD
Tương tự ta CM được AC là đường trung tuyến của tam giác AME
=> góc CAM = góc CAE
=> \(\widehat{DAE}=\widehat{MAB}+\widehat{BAD}+\widehat{CAM}+\widehat{CAE}\)\(=2\widehat{BAC}=140\sigma\)
b.Tam giác IMD có IB vừa là đường cao vừa là đường trung tuyến
=> IB là đường phân giác của góc DIM
=> IB là đường phân giác ngoài của tam giác IMK
Tương tự ta có : IC là đường phân giác của góc MKE
=> IC là đường phân giác ngoài của tam giác IMK
Tam giác IMK có 2 đường phân giác ngoài kẻ từ I và K cắt nhau tại A
=> MA là đường phân giác trong của tam giác IMK
=> MA là đường phân giác của góc IMK
c.Tam giác ADM cân tại A => AD=AM
Tam giác AEM cân tại A => AE=AM
=> AD=AE => tam giác ADE cân tại A
Tam giác ADE cân tại A có góc ở đỉnh DAE ko đổi ( = 2* góc ABC )
=> Cạnh đáy DE có đọ dài nhỏ nhất khi cạnh bên AD có độ dài nhỏ nhất
=> AM có độ dài nhỏ nhất
=> AM là đường cao của tam giác ABC
=> M là chân đường cao kẻ từ A xuống BC