Cho tứ giác ABCD. Góc M, N, P, Q theo thứ tự là trung điểm các cạnh AB, BC, CD và DA
Chứng minh: Tứ giác MNPQ là hình bình hành
Gợi ý : Kẻ đường chéo BD
Áp dụng tính chất đường trung bình trong tam giác
=> MQ // NP
-> MQ = NP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta\)BAC có MN là đường trung bình nên \(MN//AC;MN=\frac{AC}{2}\left(1\right)\)
Xét \(\Delta\)ADC có PQ là đường trung bình nên \(PQ//AC;PQ=\frac{AC}{2}\left(2\right)\)
Từ ( 1 ) ; ( 2 ) suy ra \(MN//PQ;MN=PQ\)
Do đó tứ giác MNPQ là hình bình hành.
b: Xét ΔABC có
M là trung điểm của BA
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và MN=AC/2(1)
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của CD
Do đó: QP là đường trung bình của ΔADC
Suy ra: QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
hay MNPQ là hình bình hành
a: Xét ΔBAD có
M,Q lần lượt là tđiểm của AB và AD
nên MQ là đường trung bình
=>MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N,P lần lượt là trung điểm của CB và CD
nên NP là đường trung bình
=>NP//BD và NP=BD/2(2)
Từ (1) và (2) suy a MQ//NP và MQ=NP
=>MNPQ là hình bình hành
b: Xét ΔABC có
M,N lần lượt là trung điểm của BA và BC
nên MN là đường trung bình
=>MN=AC/2 và MN//AC
Để MNPQ là hình chữ nhật thì MN vuông góc với MQ
=>AC vuông góc với BD
a: Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\)(1)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành