Giair PT nghiệm nguyên \(x^3-y^3=13\left(x^2+y^2\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khai triển tung hết đẳng thức đã cho ra rồi thu gọn ta được
\(2y^3+x^2y^2+xy+3x^2y-3xy^2=0\left(1\right)\)
Vì y khác 0 nên chia cả 2 vế của (1) cho y ta đc
\(2y^2+x^2y+x+3x^2-3xy=0\)
\(\Leftrightarrow x^2\left(3+y\right)-x\left(3y-1\right)+2y^2=0\left(2\right)\)
Vì y nguyên dương => y + 3 > 0 nên pt (2) là pt bậc 2 ẩn x
Ta có \(\Delta=-8y^3-15y^2-6y+1\)
Để pt có nghiệm thì \(\Delta\ge0\Leftrightarrow y\le\frac{1}{8}\)
mà y nguyên dương => y thuộc rỗng
=> Pt đã cho ko có nghiệm nguyên dương
Lời giải:
Theo hằng đẳng thức đáng nhớ:
$x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)$
$\Leftrightarrow 3=27-3(x+y)(y+z)(x+z)$
$\Leftrightarrow (x+y)(y+z)(x+z)=8$Đặt $(x+y,y+z,x+z)=(a,b,c)$ thì $abc=8$ và $a+b+c=6$Do $a+b+c=6>0$ nên $(a,b,c)$ sẽ là 3 số dương hoặc $1$ dương $2$ âm.
TH1: $a,b,c$ đều dương.
Áp dụng BĐT AM-GM: $a+b+c\geq 3\sqrt[3]{abc}=3\sqrt[3]{8}=6$
Dấu "=" xảy ra khi $a=b=c=2$
$\Leftrightarrow x+y=y+z=x+z=2\Leftrightarrow x=y=z=1$
TH2: $a,b,c$ có 1 số dương 2 số âm. Giả sử $a$ dương và $b,c$ âm.
$a+b+c=6$ nên $a>6$. Mà $abc=8$ nên $a=8$
$\Rightarrow bc=1$ và $b+c=-2$
$\Rightarrow b=c=-1$
$\Rightarrow x=y=4; z=-5$
Vậy $(x,y,z)=(1,1,1); (4,4,-5)$ và hoán vị.
\(y\left(x-2\right)=x^2+3\)
\(\Leftrightarrow\)\(y\left(x-2\right)-x^2=3\)
\(\Leftrightarrow\)\(y\left(x-2\right)-x^2+4=7\)
\(\Leftrightarrow\)\(y\left(x-2\right)-\left(x-2\right)\left(x+2\right)=7\)
\(\Leftrightarrow\)\(\left(x-2\right)\left(y-x-2\right)=7\)\(=1.7=\left(-1\right).\left(-7\right)\)
Do \(x,y\)nguyên nên \(x-2\)và \(y-x-2\)nguyên
Ta lập bảng sau:
\(x-2\) | \(1\) | \(7\) | \(-1\) | \(-7\) |
\(x\) | \(3\) | \(9\) | \(1\) | \(-5\) |
\(y-x-2\) | \(7\) | \(1\) | \(-7\) | \(-1\) |
\(y\) | \(12\) | \(12\) | \(-4\) | \(-4\) |
Vậy....
p/s: phần lập bảng bn ktra lại nha, (sợ tính sai)
Xét x=3 thì pt vô nghiệm
xét x khác 3, ta có \(y=\frac{x^2+3}{x-2}=\frac{x^2-4+7}{x-2}=x+2+\frac{7}{x-2}\)
Mà x,y là số nguyên => \(\frac{7}{x-2}\) là số nguyên => x-2 thuộc ước của 7, đến đây tự làm nhá
Trừ vế cho vế:
\(\Rightarrow x^3-y^3=6\left(x^2-y^2\right)-m\left(x-y\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-6\left(x+y\right)+m\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=y\\x^2+xy+y^2-6\left(x+y\right)+m=0\end{matrix}\right.\)
- Với \(x=y\Rightarrow x^3=8x^2-mx\Leftrightarrow x\left(x^2-8x+m\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-8x+m=0\end{matrix}\right.\)
Do đó hệ luôn luôn có nghiệm \(\left(x;y\right)=\left(0;0\right)\) với mọi m
Để hệ chỉ có 1 nghiệm thì \(x^2-8x+m=0\) vô nghiệm \(\Rightarrow m>16\)
Khi đó, xét pt \(x^2+xy+y^2-6\left(x+y\right)+m=0\) (1)
Ta có:
\(x^2+xy+y^2-6\left(x+y\right)+m>\dfrac{3}{4}\left(x+y\right)^2-6\left(x+y\right)+16=\dfrac{3}{4}\left(x+y-4\right)^2+4>0\)
\(\Rightarrow\) (1) vô nghiệm hay hệ có đúng 1 nghiệm \(\left(x;y\right)=\left(0;0\right)\)
Vậy \(m>16\) thì hệ có 1 nghiệm