Tìm tập xác định của hàm số sau
y=\(\frac{3x+2}{Ix^2+xI+Ix+1I}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
\(\left|2-x\right|+2=x\)
\(\Rightarrow\orbr{\begin{cases}\left|2-x\right|=x\\2=x\end{cases}\Rightarrow x=2}\)
Vậy \(x=2\)
\(\left|x-1\right|\left|-x-1\right|=0\)
\(\Rightarrow\orbr{\begin{cases}\left|x-1\right|=0\\\left|-x-1\right|=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}}\)
Vậy \(x\in\left\{1;-1\right\}\)
A, bạn ơi mình biết làm hết r
B,cài này dễ lằm bạn nghĩ đi okeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
a) \(\left|2x\right|=3-x\)
\(\Rightarrow\orbr{\begin{cases}2x=3-x\\2x=x-3\end{cases}}\Rightarrow\orbr{\begin{cases}2x+x=3\\2x-x=-3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x=3\\x=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)
b) \(\left|x-1\right|=2x-1\)
\(\Rightarrow\orbr{\begin{cases}x-1=2x-1\\x-1=1-2x\end{cases}}\Rightarrow\orbr{\begin{cases}x-2x=-1+1\\x+2x=1+1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}-x=0\\3x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{2}{3}\end{cases}}\)
#)Giải :
a) \(\left|x-1\right|+\left|x+2\right|=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}}\)
b) \(\left|2x-1\right|+\left|y^2-y\right|=0\Leftrightarrow\orbr{\begin{cases}2x-1=0\\y^2-y=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=1\\y^2=y\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\y\in\left\{-1;0;1\right\}\end{cases}}}\)
Làm mẫu 1 phần :
a) \(|3x-1|+|x-1|=4\left(1\right)\)
Ta có: \(3x-1=0\Leftrightarrow x=\frac{1}{3}\)
\(x-1=0\Leftrightarrow x=1\)
Lập bảng xét dấu :
3x-1 x-1 1/3 1 0 0 - - - + + + +
+) Với \(x< \frac{1}{3}\Rightarrow\hept{\begin{cases}3x-1< 0\\x-1< 0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=1-3x\\|x-1|=1-x\end{cases}\left(2\right)}}\)
Thay (2) vào (1) ta được :
\(\left(1-3x\right)+\left(1-x\right)=4\)
\(2-4x=4\)
\(4x=-2\)
\(x=\frac{-1}{2}\)( chọn )
+) Với \(\frac{1}{3}\le x< 1\Rightarrow\hept{\begin{cases}3x-1>0\\x-1< 0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=3x-1\\|x-1|=1-x\end{cases}\left(3\right)}}\)
Thay (3) vào (1) ta được :
\(\left(3x-1\right)+\left(1-x\right)=4\)
\(2x=4\)
\(x=2\)( chọn )
+) Với \(x\ge1\Rightarrow\hept{\begin{cases}3x-1>0\\x-1>0\end{cases}\Rightarrow}\hept{\begin{cases}|3x-1|=3x-1\\|x-1|=x-1\end{cases}\left(4\right)}\)
Thay (4) vào (1) ta được :
\(\left(3x-1\right)+\left(x-1\right)=4\)
\(4x-2=4\)
\(4x=6\)
\(x=\frac{3}{2}\)( chọn )
Vậy \(x\in\left\{\frac{-1}{2};2;\frac{3}{2}\right\}\)