CMR:
a,1 + 3 + 5 +......+ ( 2n - 1 ) = n2
b,1 x 4 + 2 x 7 + .............. + n x ( 3n + 1 )2 =n x ( n + 1 ) x ( 2n + 1 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét chút nè:))
Ở chỗ 3.(x - 1).(x + 1) thì bạn có thể áp dụng HĐT để ra lun là:
= 3. (x2 - 12)
= ...................
Như thế sẽ giảm thiểu khả năng sai sót hơn!
1.Tìm x:
a) -13(x-1)+3(2-x)=6
-13x-x+6-3x=6
x-x-3x=6+13-6
5x=13
x=13/5
vậy x=13/5
b)7.(x-3)-3(3-x)=0
7x-21-9-3x=0
7x-3x=0+21+9
4x=30
x=15/2
vậy x=15/2
c)2|3x-1|-5=7
2|3x-1|=7+5
2|3x-1|=12
|3x-1|=12:2
|3x-1|=6
* 3x-1=6 * 3x-1=-6
3x=6+1 3x=-6+1
3x=7 3x=-5
x=7/3 x=-5/3
vậy x=7/3 hoặc x=-5/3
Bài làm :
\(a,\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)+10\)
\(=8x+16-5x^2-10x+\left(4x-8\right)\left(x+1\right)+2\left(x^2-2^2\right)+10\)
\(=8x+16-5x^2-10x+4x^2+4x-8x-8+2x^2-8+10\)
\(=\left(8x-10x+4x-8x\right)+\left(-5x^2+4x^2+2x^2\right)+\left(16-8-8+10\right)\)
\(=-6x+x^2+10\)
a)\(\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)+10\)\(=8x+16-5x^2-2+4x-8x-8+2x-4x-4+10\)\(=\left(8x+4x-8x+2x-4x\right)+\left(16-2-8-4+10\right)+5x^2\)
\(=2x+12+5x^2\)
b)\(4\left(x-1\right)\left(x+5\right)-\left(x+2\right)\left(x+5\right)-3\left(x-1\right)\left(x+2\right)\)
\(=4x-4x-20-\left[x^2+5x+2x+10\right]-3\left[x^2+2x-1x-2\right]\)
\(=4x-4x-20-x^2-5x-2x-10-3x^2-6x+3x+6\)
\(=\left(4x-4x-5x-2x-6x+3x\right)+\left(-20-10+6\right)+\left(-x^2-3x^2\right)\)
\(=-10x-24-4x^2\)
c)\(\left(x^{2n}+x^ny^n+y^{2n}\right)\left(x^n-y^n\right)\left(x^{3n}+y^{3n}\right)\)
Xét tích \(\left(x^{2n}+x^ny^n+y^{2n}\right)\left(x^n-y^n\right)\Leftrightarrow\left(x^n\right)^3-\left(y^n\right)^3=x^{3n}-y^{3n}\)
Thay vào bt đã cho ta có \(\left(x^{3n}-y^{3n}\right)\left(x^{3n}+y^{3n}\right)\)
\(\Leftrightarrow\left(x^{3n}\right)^2-\left(y^{3n}\right)^2=x^{6n}-y^{6n}\)
Mk lm câu b bài 2 há!
b, ( 8x - 3 )( 3x + 2 ) - ( 4x + 7 )( x + 4 ) = ( 2x +1 )( 5x - 1) =- 33
Pt <=> 3x ( 8x - 3 ) + 2( 8x- 33) - ( x ( 4x + 7) ) + ( 2x + 1) - 5x ( 2x + 1) + 33 = 0
<=> 24x2 - 9x + 16x - 6 - ( 4x2 + 7x + 16x + 28) + 2x + 1 - 10x2 - 5x + 33 = 0
<=> 24x2 - 9x + 16x - 6 - 4x2 - 7x - 16x - 28 + 2x + 1 - 10x2 - 19x = 0 <=> x ( 10x - 19) = 0
=> \(\orbr{\begin{cases}x=0\\10x-19=0\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{19}{10}\end{cases}}\)
^^ Ok con tê tê!
a: \(4x^2\left(3x^{n+1}-2x^n\right)\)
\(=4x^2\cdot3x^{n+1}-4x^2\cdot2x^n\)
\(=12x^{n+3}-8x^{n+2}\)
b: \(2\left(x^{2n}+2x^ny^n+y^{2n}\right)-y^n\left(4x^n+2y^n\right)\)
\(=2x^{2n}+4x^ny^n+2y^{2n}-4x^ny^n-2y^{2n}\)
\(=2x^{2n}\)
c: \(=\left(x^{3n}-y^{3n}\right)\left(x^{3n}+y^{3n}\right)\)
\(=x^{6n}-y^{6n}\)
d: \(=4^n\cdot4-3\cdot4^n=4^n\)
a: 4x2(3xn+1−2xn)4x2(3xn+1−2xn)
=4x2⋅3xn+1−4x2⋅2xn=4x2⋅3xn+1−4x2⋅2xn
=12xn+3−8xn+2=12xn+3−8xn+2
b: 2(x2n+2xnyn+y2n)−yn(4xn+2yn)2(x2n+2xnyn+y2n)−yn(4xn+2yn)
=2x2n+4xnyn+2y2n−4xnyn−2y2n=2x2n+4xnyn+2y2n−4xnyn−2y2n
=2x2n=2x2n
c: =(x3n−y3n)(x3n+y3n)=(x3n−y3n)(x3n+y3n)
=x6n−y6n=x6n−y6n
d: =4n⋅4−3⋅4n=4n