Tìm m
\(\frac{1}{2}^m=\frac{1}{32}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)
\(=>\left(\frac{1}{2}\right)^m=\frac{1^5}{2^5}\)
\(=>\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\)
\(=>m=5\)
b) \(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)
\(=>\frac{7^3}{5^3}=\left(\frac{7}{5}\right)^n\)
\(=>\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)
\(=>n=3\)
a) \(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)
\(\Rightarrow\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\)
=> m =5
b) \(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)
\(\Rightarrow\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)
=> n = 3
Đặt A = 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64
2A = 1 - 1/2 + 1/4 - 1/8 + 1/16 - 1/32
2A + A = (1 - 1/2 + 1/4 - 1/8 + 1/16 - 1/32) + (1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64)
3A = 1- 1/64 = 63/64 => A = 63/64 : 3 = 21/64
Dễ thấy: 1/3 = 21/63 > 21/64
Vậy A < 1/3 (ĐPCM)
a,\(M=\left(\frac{4}{x-4}-\frac{4}{x+4}\right).\frac{x^2+8x+16}{32}\)
\(M=\left(\frac{4\left(x+4\right)-4\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}\right).\frac{\left(x+4\right)^2}{32}\)
\(M=\frac{4x+16-4x+16}{\left(x+4\right)\left(x-4\right)}.\frac{\left(x+4\right)^2}{32}\)
\(M=\frac{32\left(x+4\right)^2}{32\left(x+4\right)\left(x-4\right)}=\frac{x+4}{x-4}\)
b,
Để M = \(\frac{1}{3}\)
\(\Rightarrow x-4=3x+12\)
\(\Rightarrow2x=16\Leftrightarrow x=8\)
\(c,\)\(\frac{x+4}{x-4}=\frac{x-4+8}{x-4}\)
\(\Rightarrow x-4\inƯ\left(8\right)=\left(1;-1;2;-2;4;-4;8;-8\right)\)
\(\Rightarrow x-4\in\left(5;3;6;2;8;0;12;-4\right)\)
Vậy để M thuộc Z thì x phải thỏa mãn các điều kiện trên .
\(32\left(\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+...+\frac{1}{197.200}\right)-x=\frac{1}{2}\)
\(\frac{32}{3}\left(\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+....+\frac{3}{197.200}\right)-x=\frac{1}{2}\)
\(\frac{32}{3}\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{197}-\frac{1}{200}\right)-x=\frac{1}{2}\)
\(\frac{32}{3}\left(\frac{1}{8}-\frac{1}{200}\right)-x=\frac{1}{2}\)
x=0.78
a, ( 1/2 ) ^ m = ( 1/2) ^5
=> m = 5
b, ( 7/5) ^n = 343 / 125
=> ( 7/5)^n = (7/5) ^ 3
=> n = 3
Đúng cho tui nha
\(a.\left(\frac{1}{2}\right)^m=\frac{1}{32}\)
\(\left(\frac{1}{2}\right)^m=\frac{1^5}{2^5}\)
\(\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\)
=>m=5
\(b.\frac{343}{125}=\left(\frac{7}{5}\right)^n\)
\(\frac{7^3}{5^3}=\left(\frac{7}{5}\right)^n\)
\(\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)
=>n=3
\(\frac{1}{2}^m=\frac{1}{32}\)
\(\frac{1}{2}^m=\left(\frac{1}{2}\right)^5\)
\(\Rightarrow m=5\)
đề thế này phải k bn
\(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\)
\(\Rightarrow m=5\)
hc tốt nhá