K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2019

Trục căn thức:

\(C=\frac{\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}+\frac{\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}+...+\)

\(+\frac{\left(\sqrt{2017}-\sqrt{2015}\right)}{\left(\sqrt{2017}+\sqrt{2015}\right)\left(\sqrt{2017}-\sqrt{2015}\right)}\)

\(C=\frac{\sqrt{3}-1}{3-1}+\frac{\sqrt{5}-\sqrt{3}}{5-3}+...+\frac{\sqrt{2017}-\sqrt{2015}}{2017-2015}\)

\(C=\frac{\sqrt{3}-1}{2}+\frac{\sqrt{5}-\sqrt{3}}{2}+...+\frac{\sqrt{2017}-\sqrt{2015}}{2}\)

\(C=\frac{\sqrt{3}-1+\sqrt{5}-\sqrt{3}+...+\sqrt{2017}-\sqrt{2015}}{2}\)

\(C=\frac{\sqrt{2017}-1}{2}\)

2 tháng 6 2017

sai đề! P/S cuối phải là 2017

31 tháng 7 2015

\(\frac{1}{\sqrt{2}-\sqrt{3}}-\frac{1}{\sqrt{3}-\sqrt{4}}+...-\frac{1}{\sqrt{2013}-\sqrt{2014}}+\frac{1}{\sqrt{2014}-\sqrt{2015}}\)

\(=\frac{\sqrt{2}+\sqrt{3}}{2-3}-\frac{\sqrt{3}+\sqrt{4}}{3-4}+...+\frac{\sqrt{2014}+\sqrt{2015}}{2014-2015}\)

\(=-\left(\sqrt{2}+\sqrt{3}\right)+\sqrt{3}+\sqrt{4}-\left(\sqrt{4}+\sqrt{5}\right)+...+\sqrt{2014}+\sqrt{2015}\)

=\(-\sqrt{2}+\sqrt{2015}\)

7 tháng 6 2019

với n >0, ta có :

\(\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)=n+1-n=1\Rightarrow\frac{1}{\sqrt{n+1}-\sqrt{n}}=\sqrt{n+1}+\sqrt{n}\)

Gọi biểu thức đã cho là A

\(A=\frac{1}{-\left(\sqrt{2}-\sqrt{1}\right)}-\frac{1}{-\left(\sqrt{3}-\sqrt{2}\right)}+...+\frac{1}{-\left(\sqrt{8}-\sqrt{7}\right)}-\frac{1}{-\left(\sqrt{9}-\sqrt{8}\right)}\)

\(A=-\frac{1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}-...-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{9}-\sqrt{8}}\)

\(A=-\left(\sqrt{2}+\sqrt{1}\right)+\left(\sqrt{3}+\sqrt{2}\right)-...-\left(\sqrt{8}+\sqrt{7}\right)+\left(\sqrt{9}+\sqrt{8}\right)\)

\(A=-\sqrt{1}+\sqrt{9}=2\)

7 tháng 6 2019

\(\frac{1}{\sqrt{n}-\sqrt{n+1}}=\frac{\sqrt{n}+\sqrt{n+1}}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n}-\sqrt{n+1}\right)}=-\sqrt{n}-\sqrt{n+1}\)

30 tháng 8 2015

\(\frac{1}{\text{ }\sqrt{\frac{3}{5}}+\sqrt{\frac{3}{7}}+1}=\frac{1}{\frac{\sqrt{3.7}+\sqrt{3.5}+\sqrt{5.7}}{\sqrt{5.7}}}=\frac{\sqrt{35}}{\sqrt{21}+\sqrt{35}+\sqrt{15}}\)

Tương tự :

 \(\frac{1}{\sqrt{\frac{5}{3}}+\sqrt{\frac{5}{7}}+1}=\frac{\sqrt{21}}{\sqrt{35}+\sqrt{15}+\sqrt{21}}\)

 

\(\frac{1}{\sqrt{\frac{7}{3}}+\sqrt{\frac{7}{5}}+1}=\frac{\sqrt{15}}{\sqrt{21}+\sqrt{35}+\sqrt{15}}\)

Bây giờ chỉ việc cộng lại chung mẫu

Kq ; 1 

6 tháng 3 2021
Xét biểu thức phụ : 1 (2n+3)√2n+1+(2n+1)√2n+3 = 1 √2n+1.√2n+3(√2n+1+√2n+3) = √2n+3−√2n+1 √2n+1.√2n+3[(2n+3)−(2n+1)] = √2n+3−√2n+1 2√2n+1.√2n+3 = 1 2 ( 1 √2n+1 − 1 √2n+3 )với n≥1 Áp dụng : S= 1 3√1+1√3 + 1 3√5+5√3 + 1 5√7+7√5 +...+ 1 101√103+103√101 = 1 2 ( 1 √1 − 1 √3 )+ 1 2 ( 1 √3 − 1 √5 )+ 1 2 ( 1 √5 − 1 √7 )+...+ 1 2 ( 1 √101 − 1 √103 ) = 1 2 (1− 1 √3 + 1 √3 − 1 √5 + 1 √5 − 1 √7 +...+ 1 √101 − 1 √103 ) = 1 2 (1− 1 √103 )
30 tháng 8 2016

Phân tích mỗi hạng tử theo kiểu như dưới đây

\(\frac{\sqrt{1}+\sqrt{2}}{\left(\sqrt{1}\right)^2-\left(\sqrt{2}\right)^2}\)

\(\frac{\sqrt{2}+\sqrt{3}}{\left(\sqrt{2}\right)^2-\left(\sqrt{3}\right)^2}\)

Khi đó mọi mẫu đều bằng -1

Bạn tiếp tục làm và kết quả nhận được là \(1-\sqrt{9}\)