Cho A=\(\text{1}^{\text{3}}+\text{2}^{\text{3}}+\text{3}^{\text{3}}+...+\text{16}^{\text{3}} \). Chứng minh rằng A⋮17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Âu Mai Gớt :)) Bài này là cả giờ sinh hoạt của t.
Đặt: \(L=1.2.3+2.3.4+100.101.102\)
\(4L=1.2.3.4+2.3.4.\left(5-1\right)+...+100.101.102.\left(103-99\right)\)
\(4L=1.2.3.4+2.3.4.5-1.2.3.4+...+100.101.102.103-99.100.101.102\)
\(4L=100.101.102.103\Leftrightarrow L=\dfrac{100.101.102.103}{4}\)(1)
Mặt khác( Kiểu người 2 mặt ý) :
\(L=\left(2-1\right).2.\left(2+1\right)+\left(3-1\right).3.\left(3+1\right)+...+\left(101-1\right).101.\left(101+1\right)\)
\(L=2\left(2^2-1\right)+3\left(3^2-1\right)+...+101\left(101^2-1\right)\)
\(L=2^3-2+3^3-3+...+101^3-101\)
\(L=\left(1^3+2^3+3^3+...+100^3\right)-\left(1+2+3+...+100\right)+101^3-101\)(2)
Từ (1) và (2) ta có: \(\left(1^3+2^3+3^3+...+100^3\right)-\left(1+2+3+...+100\right)+101^3-101=\dfrac{100.101.102.103}{4}\)
\(\Rightarrow A-\dfrac{100.101}{2}+101^3-101=25.101.102.103\)
\(\Rightarrow A=25.101.102.103+101-101^3+\dfrac{100.101}{2}\)
\(A=25502500\)
\(\)Mà: \(B=1+2+3+...+100=\dfrac{100.101}{2}=5050\)
\(\Rightarrow\dfrac{A}{B}=5050\Leftrightarrow A⋮B\)
ta có điều phải chứng minh.
P/S: Có thể nhận thấy rằng: \(A=B^2\).Công thức tổng quát:
\(1^3+2^3+...+l^3=\left(1+2+3+...+l\right)^2\)
a) Từ giả thiết : \(\dfrac{1}{a}+\dfrac{1}{b}\text{=}\dfrac{1}{c}\)
\(\Rightarrow2ab\text{=}2bc+2ca\)
\(\Rightarrow2ab-2bc-2ca\text{=}0\)
Ta xét : \(\left(a+b-c\right)^2\text{=}a^2+b^2+c^2+2ab-2bc-2ca\)
\(\text{=}a^2+b^2+c^2\)
Do đó : \(A\text{=}\sqrt{a^2+b^2+c^2}\text{=}\sqrt{\left(a+b-c\right)^2}\)
\(\Rightarrow A\text{=}a+b-c\)
Vì a;b;c là các số hữu tỉ suy ra : đpcm
b) Đặt : \(a\text{=}\dfrac{1}{x-y};b\text{=}\dfrac{1}{y-x};c\text{=}\dfrac{1}{z-x}\)
Do đó : \(\dfrac{1}{a}+\dfrac{1}{b}\text{=}\dfrac{1}{c}\)
Ta có : \(B\text{=}\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\)
Từ đây ta thấy giống phần a nên :
\(B\text{=}a+b-c\)
\(B\text{=}\dfrac{1}{x-y}+\dfrac{1}{y-z}-\dfrac{1}{z-x}\)
Suy ra : đpcm.
Mình bổ sung đề phần b cần phải có điều kiện của x;y;z nha bạn.
\(=\dfrac{2}{3}+\dfrac{1}{5}-\dfrac{2}{3}-4\)
\(=\dfrac{1}{5}-4=\dfrac{-19}{5}\)
a, \(=7\sqrt{2}-6\sqrt{2}+\frac{1}{2}.2\sqrt{2}=\sqrt{2}+\sqrt{2}=2\sqrt{2}\)
b, \(=4\sqrt{a}+4\sqrt{10a}-9\sqrt{10a}=4\sqrt{a}-5\sqrt{10a}\)
c, \(=6+\sqrt{15}-\sqrt{60}=6+\sqrt{15}-2\sqrt{15}=6-\sqrt{15}\)
Rút gọn
a) Ta có: \(\sqrt{98}-\sqrt{72}+\frac{1}{2}\sqrt{8}\)
\(=\sqrt{2}\left(\sqrt{49}-\sqrt{36}+\frac{1}{2}\sqrt{4}\right)\)
\(=\sqrt{2}\left(7-6+\frac{1}{2}\cdot2\right)\)
\(=\sqrt{2}\left(1+1\right)=2\sqrt{2}\)
b) Ta có: \(\sqrt{16a}+2\sqrt{40a}-3\sqrt{90a}\)
\(=\sqrt{a}\left(\sqrt{16}+2\sqrt{40}-3\sqrt{90}\right)\)
\(=\sqrt{a}\left(4+4\sqrt{10}-9\sqrt{10}\right)\)
\(=\sqrt{a}\left(4-5\sqrt{10}\right)\)
\(=4\sqrt{a}-5\sqrt{10a}\)
c) Ta có: \(\left(2\sqrt{3}+\sqrt{5}\right)\cdot\sqrt{3}-\sqrt{60}\)
\(=6+\sqrt{15}-\sqrt{60}\)
\(=6-\sqrt{15}\)
Lời giải:
Ta có:
$a^2=3+\sqrt{5+2\sqrt{3}}+3-\sqrt{5+2\sqrt{3}}+2\sqrt{(3+\sqrt{5+2\sqrt{3}})(3-\sqrt{5+2\sqrt{3}})}$
$=6+2\sqrt{3^2-(5+2\sqrt{3})}=6+2\sqrt{4-2\sqrt{3}}=6+2\sqrt{3+1-2\sqrt{3}}$
$=6+2\sqrt{(\sqrt{3}-1)^2}=6+2(\sqrt{3}-1)=4+2\sqrt{3}=(\sqrt{3}+1)^2$
$\Rightarrow a=\sqrt{3}+1$ (do $a\geq 0$)
Do đó:
$a^2-2a-2=4+2\sqrt{3}-2(\sqrt{3}+1)-2=0$ (đpcm)
Bài 4: b) Vì n(n+1)(n+2) là tích của 3 số tự nhiên liên tiếp.
=> Tồn tại 1 số chia hết cho 2.
Tồn tại 1 số chia hết cho 3.
=> n(n+1)(n+2) chia hết cho cả 2 và 3.
c) Ta có: n(n+1)(2n+1)=n(n+1)[(n+2)+(n-1)]
=n(n+1)(n+2)+n(n+1)(n-1)
Nhận thấy: n(n+1)(n+2) và n(n+1)(n-1) là tích của 3 số tự nhiên liên tiếp
=>Tồn tại 1 số chia hết cho 2.
Tồn tại 1 số chia hết cho 3.
=> n(n+1)(2n+1) chia hết cho 2 và 3.
bài 3 nah không biết đúng hông nữa
n=20a20a20a=20a20a.1000+20a=(20a.1000+20a).1000+20a=1001.20a.1000+20a
theo đề bài n chia hết cho 7,mà 1001 chia hết cho 7 nên 20a chia hết cho 7
ta có 20a = 196+(4+a),chia hết cho 7 nên 4 + a chia hết cho 7 .Vậy a = 3
\(A=1^3+2^3+3^3+...+16^3\)
\(=\left(1^3+16^3\right)+\left(2^3+15^3\right)+\left(3^3+14^3\right)+...+\left(8^3+9^3\right)\)
\(=\left(1+16\right)\left(1^2-1.16+16^2\right)+\left(2+15\right)\left(2^2-2.15+15^2\right)+...+\left(8+9\right)\left(8^2-8.9+9^2\right)\)
\(=17.\left(1^2-1.16+16^2\right)+17.\left(2^2-2.15+15^2\right)+...+17.\left(8^2-8.9+9^2\right)\)
\(=17.\left(1^2-1.16+16^2+2^2-2.15+15^2+...+8^2-8.9+9^2\right)⋮17\)
hay : \(A⋮17\) ( đpcm )