K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2019

A B C M U V D E F p p p q q

Gọi tiếp điểm giữa đường tròn nội tiếp \(\Delta\)ABC với BC,CA,AB lần lượt là D,E,F; BM cắt đường tròn này tại U,V.

 Đặt \(BC=m;CA=n;BU=UV=VM=p;AE=AF=q\left(m,n,p,q>0;q< x\right)\)

Áp dụng phương tích đường tròn ta có: \(BF^2=ME^2=2p^2\Rightarrow AB=AM=\frac{n}{2}\)hay \(n=2x\)

Đồng thời \(CD=CE=2x-q;BD=BF=x-q\Rightarrow m=3x-2q;p^2=\frac{\left(x-q\right)^2}{2}\)

Từ đó; áp dụng công thức đường trung tuyến, ta có:

\(\frac{9}{2}\left(x-q\right)^2=\frac{x^2+\left(3x-2q\right)^2}{2}-x^2\Leftrightarrow x^2-6xq+5q^2=0\Leftrightarrow\orbr{\begin{cases}q=x\left(l\right)\\q=\frac{x}{5}\end{cases}}\)

Do vậy \(m=3x-\frac{2}{5}x=\frac{13}{5}x\)

Áp dụng công thức Heron vào \(\Delta\)ABC, ta thu được: \(S_{ABC}=\sqrt{x^4.\frac{14}{5}.\frac{9}{5}.\frac{4}{5}.\frac{1}{5}}=\frac{6\sqrt{14}}{25}x^2.\)

21 tháng 7 2018

21 tháng 7 2016

chịu