phân tích đa thức thành nhân tử
a/ x2 + 4x – 21
b/ 3x2 - 6xy + 3y2 – 3z2
c/ 2x2y + 12xy + 18y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3x^4y-12x^2y^3=3x^2y\left(x^2-\left(2y\right)^2\right)=3x^2y\left(x+2y\right)\left(x-2y\right)\)
b) Sửa đề: \(x^2-y^2-8x+16=\left(x-4\right)^2-y^2=\left(x-4-y\right)\left(x-4+y\right)\)
c) \(x^3+3x^2+4x+12=x^2\left(x+3\right)+4\left(x+3\right)=\left(x^2+4\right)\left(x+3\right)\)
d) \(3x^2-6xy+3y^2-27=3\left(x^2-2xy+y^2-9\right)=3\left(\left(x-y^2\right)-3^2\right)=3\left(x-y-3\right)\left(x-y+3\right)\)
`@` `\text {Ans}`
`\downarrow`
`a,`
`3x^2 + 6xy + 3y^2 - 3z`
`= 3*x^2 + 3*2xy + 3y^2 - 3z`
`= 3(x^2 + 2xy + y^2 - z)`
`b,`
`x^3 + x^2y - x^2z - xyz`
`= x(x + y)(x-z)`
\(3x^4y-12x^2y^3=3x^2y\left(x^2-4y^2\right)=3x^2y\left(x-2y\right)\left(x+2y\right)\)
\(x^2-y^2-8y-16=x^2-\left(y^2+8y+16\right)=x^2-\left(y+4\right)^2=\left(x+y+4\right)\left(x-y-4\right)\)
\(x^3+3x^2+4x+12=x^2\left(x+3\right)+4\left(x+3\right)=\left(x^2+4\right)\left(x+3\right)\)
\(3x^2-6xy+3y^2-27=3\left[\left(x-y\right)^2-9\right]=3\left(x-y-3\right)\left(x-y+3\right)\)
1.\(=5\left(x^2-2xy+y^2-4z^2\right)=5\left[\left(x+y\right)^2-\left(2z\right)^2\right]=5\left(x+y-2z\right)\left(x+y+2z\right)\)
2. \(=\left(-5x^2+15x\right)+\left(x-3\right)=-5x\left(x-3\right)+\left(x-3\right)=\left(1-5x\right)\left(x-3\right)\)
3. \(=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\)
4.\(=3\left(x^2-2xy+y^2-4z^2\right)=3\left[\left(x-y\right)^2-\left(2z\right)^2\right]=3\left(x-y-2z\right)\left(x-y+2z\right)\)
5. \(=\left(x^2+x\right)+\left(3x+3\right)=x\left(x+1\right)+3\left(x+1\right)=\left(x+1\right)\left(x+3\right)\)
6. \(=\left(x^2-2x+1\right)\left(x^2+2x+1\right)=\left(x-1\right)^2\left(x+1\right)^2\)
7. \(=\left(x^2+x\right)-\left(5x+5\right)=x\left(x+1\right)-5\left(x+1\right)=\left(x-5\right)\left(x+1\right)\)
\(1,=5\left[\left(x-y\right)^2-4z^2\right]=5\left(x-y-2z\right)\left(x-y+2z\right)\\ 2,=-5x^2+15x+x-3=\left(x-3\right)\left(1-5x\right)\\ 3,=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\\ 4,=3\left[\left(x-y\right)^2-4z^2\right]=3\left(x-y-2z\right)\left(x-y+2z\right)\\ 5,=x^2+x+3x+3=\left(x+3\right)\left(x+1\right)\\ 6,=\left(x^2+2x+1\right)\left(x^2-2x+1\right)=\left(x-1\right)^2\left(x+1\right)^2\\ 7,=x^2+x-5x-5=\left(x+1\right)\left(x-5\right)\)
a: Ta có: \(x^2-4y^2-2x-4y\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
c: Ta có: \(x^3+2x^2y-x-2y\)
\(=x^2\left(x+2y\right)-\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-1\right)\left(x+1\right)\)
d: Ta có: \(3x^2-3y^2-2\cdot\left(x-y\right)^2\)
\(=3\left(x-y\right)\left(x+y\right)-2\cdot\left(x-y\right)^2\)
\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)
\(=\left(x-y\right)\left(x+5y\right)\)
e: Ta có: \(x^3-4x^2-9x+36\)
\(=x^2\left(x-4\right)-9\left(x-4\right)\)
\(=\left(x-4\right)\left(x-3\right)\left(x+3\right)\)
f: Ta có: \(x^2-y^2-2x-2y\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-2\right)\)
a: =3x^2-3x-8x+8=(x-1)(3x-8)
b: =x^2-x-5x+5=(x-1)(x-5)
c: =x^2-6x+2x-12=(x-6)(x+2)
a) \(3x^2-6xy+3y^2-12x^2=3\left(x^2-2xy+y^2\right)-12x^2=3\left(x-y\right)^2-12x^2=3\left[\left(x-y\right)^2-4x^2\right]=3\left(x-y-2x\right)\left(x-y+2x\right)=3\left(-x-y\right)\left(3x-y\right)\)
b)\(3x^2y^2-6x^2y^3+12x^2y^2=3x^2y^2\left(1-2y+4\right)=3x^2y^2\left(5-2y\right)\)
c) \(3x^2-3y^2+12x-12y=3\left(x^2-y^2\right)+12\left(x-y\right)=3\left(x-y\right)\left(x+y+4\right)\)
a: \(3x^2-6xy+3y^2-12x^2\)
\(=3\left(x^2-2xy+y^2-4x^2\right)\)
\(=3\left[\left(x-y\right)^2-4x^2\right]\)
\(=3\left(x-y-2x\right)\left(x-y+2x\right)\)
\(=3\left(-x-y\right)\left(3x-y\right)\)
b: \(3x^2y^2-6x^2y^3+12x^2y^2\)
\(=3x^2y^2\left(1-2y+4\right)\)
\(=3x^2y^2\left(-2y+5\right)\)
c: Ta có: \(3x^2-3y^2+12x-12y\)
\(=3\left(x-y\right)\left(x+y\right)+12\left(x-y\right)\)
\(=3\left(x-y\right)\left(x+y+4\right)\)
3x2 + 6xy + 3y2 – 3z2
= 3.(x2 + 2xy + y2 – z2)
(Nhận thấy xuất hiện x2 + 2xy + y2 là hằng đẳng thức nên ta nhóm với nhau)
= 3[(x2 + 2xy + y2) – z2]
= 3[(x + y)2 – z2]
= 3(x + y – z)(x + y + z)
a/ x2 + 4x - 21= x2 - 3x +4x - 21
= (x2+4x)-(3x+21)
= x(x+4)- 3(x+7)
= (x-3).(x+7)
b/ 3x2-6xy+3y2-3z2 = 3(x2- 2xy+y2- z2)
= 3[(x2 + 2xy + y2) – z2]
= 3[(x + y)2 – z2]
= 3(x + y – z)(x + y + z)
c/ 2x2y + 12xy + 18y = 2y(x2+6x+9)