K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 10 2019

\(P=\left(x^2-2x\right)\left(y^2+6y\right)+12\left(x^2-2x\right)+3\left(y^2+6y\right)+36\)

\(=\left(x^2-2x\right)\left(y^2+6y+12\right)+3\left(y^2+6y+12\right)\)

\(=\left(x^2-2x+3\right)\left(y^2+6y+12\right)\)

\(=\left[\left(x-1\right)^2+2\right]\left[\left(y+3\right)^2+3\right]>0\)

\(P=xy\left(x-2\right)\left(x+6\right)+12x^2-24x+3y^2+18y+36\)

\(=xy\left(x-2\right)\left(x+6\right)+12x\left(x-2\right)+3y\left(y+6\right)+36\)

Đặt \(\left\{{}\begin{matrix}x-2=a\\x+6=b\end{matrix}\right.\) . Khi đó

\(P=xy.a.b+12x.a+3y.b+36\)

Phân tích tiếp ....

4 tháng 3 2017

la x la 23,4,con y la 24,5 ko cần biết cách làm

7 tháng 3 2017

\(P=xy\left(x-2\right)\left(y+6\right)+12x^2-24x+3y^2+18y+36\)

\(=\left(x^2-2x+3\right)\left(y^2+6x+12\right)\)

Mà ta có:

\(\left\{{}\begin{matrix}x^2-2x+3=\left(x-1\right)^2+2>0\\y^2+6y+12=\left(y+3\right)^2+3>0\end{matrix}\right.\)

\(\Rightarrow\left(x^2-2x+3\right)\left(y^2+6x+12\right)>0\)

Vậy P > 0

2 tháng 6 2018

\(P=xy\left(x-2\right)\left(y+6\right)+12x^2-24x+3y^2+18y+36\)

\(=\left(x^2-2x\right)\left(y^2+6y\right)+\left(12x^2+24x+12\right)+\left(3y^2+18y+9\right)+15\)

\(=\left[\left(x-1\right)^2-1\right]\left[\left(y+3\right)^2-9\right]+12\left(x-1\right)^2+3\left(y+3\right)^2+15\)

\(=3\left(x-1\right)^2+2\left(y+3\right)^2+15\)

Do đó \(P\ge15\)

\(\Rightarrow P>0\)

Suy ra P luôn dương

6 tháng 4 2019

\(=\left(x^2+1\right)^2+3>0\forall x\in R\)

ta có : 

\(x^4\ge0\)

\(^{2x^2\ge0}\)

\(\Rightarrow x^4+2x^2\ge0\)

\(\Rightarrow x^4+2x^2+4\ge4\)

hay  \(x^4+2x^2+4>0\)

vậy...............