tìm GTLN : 5,5 - | 2x-3|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|x-2002\right|+\left|x-2003\right|=\left|x-2002\right|+\left|2003-x\right|\ge\left|-2002+2003\right|=1\)
Dấu ''='' xảy ra khi \(\left(x-2002\right)\left(2003-x\right)\ge0\Leftrightarrow2002\le x\le2003\)
Vậy GTNN của A bằng 1 tại 2002 =< x =< 2003
\(B=5,5-\left|2x-5\right|\le5,5\)
Dấu ''='' xảy ra khi x = 5/2
Vậy GTLN của B bằng 5,5 tại x = 5/2
a, Với mọi x ta có :
\(\left|4,3-x\right|\ge0\)
\(\Leftrightarrow3,7+\left|4,3-x\right|\ge3,7\)
\(\Leftrightarrow P\ge3,7\)
Dấu "=" xảy ra \(\Leftrightarrow\left|4,3-x\right|=0\)
\(\Leftrightarrow x=4,3\)
Vậy \(P_{Min}=3,7\Leftrightarrow x=4,3\)
b, Với mọi x ta có :
\(\left|2x-1,5\right|\ge0\)
\(\Leftrightarrow-\left|2x-1,5\right|\le0\)
\(\Leftrightarrow5,5-\left|2x-1,5\right|\le5,5\)
Dấu "=" xảy ra \(\Leftrightarrow\left|2x-1,5\right|=0\)
\(\Leftrightarrow2x-1,5=0\)
\(\Leftrightarrow x=0,75\)
Vậy \(Q_{Max}=5,5\Leftrightarrow x=0,75\)
Tim GTNN : D = | x - 2002 | + | x + 2001 |
Áp dụng tính chất I A I + I B I \(\ge\)I A + B I ta được:
D = | x - 2002 | + | x + 2001 |= I 2002-x I + I x+2001 I\(\ge\)I 2002-x+x+2001 I = 2003
Vậy GTNN của D là 2003 tại 2002 - x=0 hoặc x+2001 =0
x=2002 hoặc x=-2001
Tim GTLN : M = 5,5 - | 2x - 1,5 |
ta có | 2x - 1,5 |\(\ge\)0
=>- | 2x - 1,5 |\(\le\)0
=> M = 5,5 - | 2x - 1,5 |\(\le\)5,5
Vậy GTLN của M là 5,5 tại 2x-1,5=0
2x =1,5
x=\(\frac{3}{4}\)
N = | 10m2 - 3x | -14 câu này ko rõ
1.
b) \(B=\left|x+8\right|+\left|x+18\right|+\left|x+50\right|\)
Ta có:
\(B=\left|x+8\right|+\left|x+18\right|+\left|x+50\right|\ge\left(\left|x+8\right|+\left|-50-x\right|\right)+\left|x+18\right|\)
\(\Rightarrow B=\left(\left|x+8-50-x\right|\right)+\left|x+18\right|\)
\(\Rightarrow B=\left|-42\right|+\left|x+18\right|\)
\(\Rightarrow B=42+\left|x+18\right|\ge42\)
\(\Rightarrow MIN_B=42\) khi và chỉ khi:
\(\left\{{}\begin{matrix}x+8\ge0\\x+18=0\\x+50\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge-8\\x=-18\\x\ge-50\end{matrix}\right.\Rightarrow x=-18.\)
Vậy \(MIN_B=42\) khi \(x=-18.\)
3.
b) \(\left|x-3\right|-\left|2x+1\right|=0\)
\(\Rightarrow\left|x-3\right|=\left|2x+1\right|\)
\(\Rightarrow\left[{}\begin{matrix}x-3=2x+1\\x-3=-2x-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-2x=1+3\\x+2x=\left(-1\right)+3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}-1x=4\\3x=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4:\left(-1\right)\\x=2:3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=\frac{2}{3}\end{matrix}\right.\)
Vậy \(x\in\left\{-4;\frac{2}{3}\right\}.\)
Chúc bạn học tốt!
\(x^2+2x+3\)
\(=\left(x^2+2x+1\right)+2\)
\(=\left(x+1\right)^2+2\)
Do \(\left(x+1\right)^2\ge0\) với mọi x
\(\Rightarrow x^2+2x+3\ge2\)
Dấu = khi x=-1
a) Sửa đề: Tìm GTNN
A = |2x - 1| - 4
Ta có:
|2x - 1| ≥ 0 với mọi x ∈ R
⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R
Vậy GTNN của A là -4 khi x = 1/2
b) B = 1,5 - |2 - x|
Ta có:
|2 - x| ≥ 0 với mọi x ∈ R
⇒ -|2 - x| ≤ 0 với mọi x ∈ R
⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R
Vậy GTLN của B là 1,5 khi x = 2
c) C = |x - 3| ≥ 0 với mọi x ∈ R
Vậy GTNM của C là 0 khi x = 3
d) D = 10 - 4|x - 2|
Ta có:
|x - 2| ≥ 0 với mọi x ∈ R
⇒ 4|x - 2| ≥ 0 với mọi x ∈ R
⇒ -4|x - 2| ≤ 0 với mọi x ∈ R
⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R
Vậy GTLN của D là 10 khi x = 2
Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
\(B=\left|2x+3\right|-\left|2x-4\right|\le\left|2x+3-2x+4\right|=\left|7\right|=7\)
Dấu "=" xảy ra khi \(\left(2x+3\right)\left(2x-4\right)\ge0\)
TH1: \(\hept{\begin{cases}2x+3\ge0\\2x-4\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge\frac{-3}{2}\\x\ge2\end{cases}\Rightarrow x\ge2}\)
TH2: \(\hept{\begin{cases}2x+3\le0\\2x-4\le0\end{cases}\Rightarrow\hept{\begin{cases}x\le\frac{-3}{2}\\x\le2\end{cases}\Rightarrow}x\le\frac{-3}{2}}\)
Vậy Bmax = 7 khi x >= 2 hoặc x <= -3/2
Áp dungk KT \(\left|x\right|\ge0\)\(\forall\)\(x\)
BG :
Ta có : \(\left|2x-3\right|\ge0\)\(\forall\)\(x\)
nên : \(5,5-\left|2x-3\right|\ge5,5-0\)\(\forall\)\(x\)
Để \(5,5-\left|2x-3\right|\)lớn nhất thì \(\left|2x-3\right|\)phải nhỏ nhất
\(\Leftrightarrow\)\(\left|2x-3\right|=0\)
\(\Leftrightarrow\)\(2x-3=0\)
\(\Leftrightarrow\)\(2x=3\)
\(\Leftrightarrow\)\(x=\frac{3}{2}\)
Vậy GTLN của \(5,5-\left|2x-3\right|\)đạt được bằng \(5,5\)khi \(x=\frac{3}{2}\)