A= 1+2+2^2+2^3+...+2^2019
giúp mình với mn ơi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3\left(x-2\right)^2+9\left(x-1\right)=3\left(x^2+x-3\right)\\ \Leftrightarrow3\left(x^2-4x+4\right)+9x-9=3x^2+3x-9\\ \Leftrightarrow3x^2-12x+12+9x-9-3x^2-3x+9=0\\ \Leftrightarrow-6x+12=0\\ \Leftrightarrow x=2\)
\(3\left(x-2\right)^2+9\left(x-1\right)=3\left(x^2+x-3\right)\)
\(\Leftrightarrow3\left(x^2-4x+4\right)+9x-9=3x^2+3x-9\)
\(\Leftrightarrow3x^2-12x+12+9x-9-3x^2-2x+9=0\)
\(\Leftrightarrow-6x-6=0\)
\(\Leftrightarrow-6\left(x+1\right)=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy phương trình có nghiệm là \(-1\)
1) \(\left(x-3\right)^2-4=0\)
\(\Leftrightarrow\left(x-3-2\right)\left(x-3+2\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)
2) \(x^2-2x=24\)
\(\Leftrightarrow x^2-2x-24=0\)
\(\Leftrightarrow x^2+4x-6x-24=0\)
\(\Leftrightarrow x\left(x+4\right)-6\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
Bài làm:
a) \(2\left|x-1\right|-8=0\)
\(\Leftrightarrow2\left|x-1\right|=8\)
\(\Leftrightarrow\left|x-1\right|=4\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=4\\x-1=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}\)
b) \(-\left|2x+3\right|+3=6\)
\(\Leftrightarrow\left|2x+3\right|=-3\)
Mà \(\left|2x+3\right|\ge0>-3\left(\forall x\right)\)
=> Mâu thuẫn
=> Không tồn tại x thỏa mãn
a) Ta có 2|x - 1| - 8 = 0
=> 2|x - 1| = 8
=> |x - 1| = 4
=> \(\orbr{\begin{cases}x-1=4\\x-1=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}}\)
b) Ta có : -|2x + 3| + 3 = 6
=> -|2x + 3| = 3
=> |2x + 3| = -3
Vì \(\left|2x+3\right|\ge0\forall x\)
mà -3 < 0
=> x \(\in\varnothing\)
( x - 1/2 ) - 3 = 3/2
x - 1/2 = 3/2 + 3
x - 1/2 = 9/2
x = 9/2 + 1/2
x = 10/2 = 5
tick nha
\(A=1+2+2^2+2^3+...+2^{2019}\)
\(2A=2+2^2+2^3+...+2^{2020}\)
\(2A-A=2+2^2+2^3+...+2^{2020}-1-2-2^2-...-2^{2019}\)
\(A=2^{2020}-1\)