Cho đồ thị \(f\left(x\right)=x^3+3x^2+2\) và \(g\left(x\right)=x^4-2x^2-2\) . Gọi A,B lần lượt là cực đại và cực tiểu của \(f\left(x\right)\) , C là cực đại của \(g\left(x\right)\). Cho \(S=AB+BC+AC\). Tìm phương trình đường trung trực AC và tính \(S-2\sqrt{17}\).
A) \(y=0,25x+2,25\) và \(S=2+2\sqrt{5}\)
B) \(y=-\frac{1}{4}x+\frac{9}{4}\) và \(S=4+2\sqrt{5}\)
C) \(y=0,25x+\frac{9}{4}\) và \(S=8,47\)
D) \(4y=x+9\) và \(S=4+2\sqrt{5}\)
Bài này cứ giải thẳng ra thôi có vấn đề gì đâu nhỉ?
\(f'\left(x\right)=3x^2+6x=0\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=2\\x=-2\Rightarrow y=6\end{matrix}\right.\) \(\Rightarrow A\left(-2;6\right);B\left(0;2\right)\)
Hàm trùng phương thì dễ hơn, nếu thuộc lý thuyết ta nhận xét được ngay: do hệ số a=1>0 nên cực đại của hàm xảy ra tại \(x=0\Rightarrow y=-2\Rightarrow C\left(0;-2\right)\)
\(AB=2\sqrt{5};AC=2\sqrt{17};BC=4\) \(\Rightarrow S=4+2\sqrt{5}\)
Loại đáp án A và C, nhẩm được ngay trung điểm AC có tọa độ \(\left(-1;2\right)\) thay vào D thỏa mãn \(\Rightarrow D\) đúng
Hoặc cẩn thận hơn thì mất tầm 30s để viết pt trung trực cũng được