K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2021

\(\sqrt{x-2}=3\left(x\ge2\right)\\ \Leftrightarrow x-2=9\Leftrightarrow x=11\left(tm\right)\\ \sqrt{4x^2}+4x+1=3\Leftrightarrow\left|2x\right|=2-4x\\ \Leftrightarrow\left[{}\begin{matrix}2x=2-4x\left(x\ge0\right)\\2x=4x-2\left(x< 0\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\left(tm\right)\\x=1\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{1}{3}\)

3: Ta có: \(\sqrt{4x+1}=x+1\)

\(\Leftrightarrow x^2+2x+1=4x+1\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=2\left(nhận\right)\end{matrix}\right.\)

4: Ta có: \(2\sqrt{x-1}+\dfrac{1}{3}\sqrt{9x-9}=15\)

\(\Leftrightarrow3\sqrt{x-1}=15\)

\(\Leftrightarrow x-1=25\)

hay x=26

5: Ta có: \(\sqrt{4x^2-12x+9}=7\)

\(\Leftrightarrow\left|2x-3\right|=7\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=10\\2x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

22 tháng 7 2023

\(a) \sqrt{4x^2− 9} = 2\sqrt{x + 3}\)

\(ĐK:x\ge\dfrac{3}{2}\)

\(pt\Leftrightarrow4x^2-9=4\left(x+3\right)\)

\(\Leftrightarrow4x^2-9=4x+12\)

\(\Leftrightarrow4x^2-4x-21=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{22}}{2}\left(l\right)\\x=\dfrac{1+\sqrt{22}}{2}\left(tm\right)\end{matrix}\right.\)

\(b)\sqrt{4x-20}+3.\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)

\(ĐK:x\ge5\)

\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\)

\(\Leftrightarrow x-5=4\Leftrightarrow x=9\left(tm\right)\)

22 tháng 7 2023

\(c)\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27.\sqrt{\dfrac{x-1}{81}}=4\)

ĐK:x>=1

\(pt\Leftrightarrow2\sqrt{x-1}-\sqrt{x-1}+3\sqrt{x-1}=4\)

\(\Leftrightarrow4\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\)

\(d)5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)

\(ĐK:x\ge3\)

\(pt\Leftrightarrow3\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)

\(\Leftrightarrow-\dfrac{5}{3}\sqrt{x-3}-\sqrt{x^2-9}=0\Leftrightarrow\dfrac{5}{3}\sqrt{x-3}+\sqrt{x^2-9}=0\)

\(\Leftrightarrow(\dfrac{5}{3}+\sqrt{x+3})\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x-3}=0\)    (vì \(\dfrac{5}{3}+\sqrt{x+3}>0\))

\(\Leftrightarrow x-3=0\Leftrightarrow x=3\left(nhận\right)\)

 

c: Ta có: \(\sqrt{x-1}+\sqrt{9x-9}-\sqrt{4x-4}=4\)

\(\Leftrightarrow2\sqrt{x-1}=4\)

\(\Leftrightarrow x-1=4\)

hay x=5

e: Ta có: \(\sqrt{4x^2-28x+49}-5=0\)

\(\Leftrightarrow\left|2x-7\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-7=5\\2x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
8 tháng 10 2021

a. ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow \sqrt{(x-2)^2}=2-x$

$\Leftrightarrow |x-2|=2-x$
$\Leftrightarrow 2-x\geq 0$

$\Leftrightarrow x\leq 2$

b. ĐKXĐ: $x\geq 2$

PT $\Leftrightarrow \sqrt{4}.\sqrt{x-2}-\frac{1}{5}\sqrt{25}.\sqrt{x-2}=3\sqrt{x-2}-1$

$\Leftrightarrow 2\sqrt{x-2}-\sqrt{x-2}=3\sqrt{x-2}-1$

$\Leftrightarrow 1=2\sqrt{x-2}$

$\Leftrightarrow \frac{1}{2}=\sqrt{x-2}$

$\Leftrightarrow \frac{1}{4}=x-2$

$\Leftrightarrow x=\frac{9}{4}$ (tm)

24 tháng 9 2023

a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)

\(\Leftrightarrow-2\sqrt{x-1}=-2\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\left(tm\right)\)

b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))

\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=16\)

\(\Leftrightarrow x=15\left(tm\right)\)

AH
Akai Haruma
Giáo viên
16 tháng 7 2020

k) ĐK: $x^2\geq 5$

PT $\Leftrightarrow 2\sqrt{x^2-5}-\frac{1}{3}\sqrt{x^2-5}+\frac{3}{4}\sqrt{x^2-5}-\frac{5}{12}\sqrt{x^2-5}=4$

$\Leftrightarrow 2\sqrt{x^2-5}=4$

$\Leftrightarrow \sqrt{x^2-5}=2$

$\Rightarrow x^2-5=4$

$\Leftrightarrow x^2=9\Rightarrow x=\pm 3$ (đều thỏa mãn)

l) ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow 2\sqrt{x+1}+3\sqrt{x+1}-\sqrt{x+1}=4$

$\Leftrightarrow 4\sqrt{x+1}=4$

$\Leftrightarrow \sqrt{x+1}=1$

$\Rightarrow x+1=1$

$\Rightarrow x=0$

m) 

ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow 4\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}+3\sqrt{x+1}$

$\Leftrightarrow 6\sqrt{x+1}=16+2\sqrt{x+1}$

$\Leftrightarrow 4\sqrt{x+1}=16$

$\Leftrightarrow \sqrt{x+1}=4$

$\Rightarrow x=15$ (thỏa mãn)

AH
Akai Haruma
Giáo viên
16 tháng 7 2020

h) 

ĐKXĐ: $x\geq -5$

PT $\Leftrightarrow \sqrt{x+5}=6$

$\Rightarrow x+5=36\Rightarrow x=31$ (thỏa mãn)

i) ĐKXĐ: $x\geq 5$

PT \(\Leftrightarrow \sqrt{x-5}+4\sqrt{x-5}-\sqrt{x-5}=12\)

\(\Leftrightarrow 4\sqrt{x-5}=12\Leftrightarrow \sqrt{x-5}=3\Rightarrow x-5=9\Rightarrow x=14\) (thỏa mãn)

j) 

ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow 3\sqrt{2x}+\sqrt{2x}-6\sqrt{2x}+4=0$

$\Leftrightarrow -2\sqrt{2x}+4=0$

$\Leftrightarrow \sqrt{2x}=2$

$\Rightarrow x=2$ (thỏa mãn)

 

31 tháng 8 2021

a, ĐK: \(x\ge2\)

\(\sqrt{2x+1}-\sqrt{x-2}=x+3\)

\(\Leftrightarrow\dfrac{x+3}{\sqrt{2x+1}+\sqrt{x-2}}=x+3\)

\(\Leftrightarrow\left(x+3\right)\left(\dfrac{1}{\sqrt{2x+1}+\sqrt{x-2}}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\left(l\right)\\\sqrt{2x+1}+\sqrt{x-2}=1\left(vn\right)\end{matrix}\right.\)

Phương trình vô nghiệm.

 

31 tháng 8 2021

b, ĐK: \(x\ge-1\)

\(\sqrt{x+3}+2x\sqrt{x+1}=2x+\sqrt{x^2+4x+3}\)

\(\Leftrightarrow\sqrt{x+3}+2x\sqrt{x+1}=2x+\sqrt{\left(x+3\right)\left(x+1\right)}\)

\(\Leftrightarrow-\sqrt{x+3}\left(\sqrt{x+1}-1\right)+2x\left(\sqrt{x+1}-1\right)=0\)

\(\Leftrightarrow\left(2x-\sqrt{x+3}\right)\left(\sqrt{x+1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=2x\\\sqrt{x+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x+3=4x^2\end{matrix}\right.\\x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=0\left(tm\right)\end{matrix}\right.\)

a: =>2*căn x+5+căn x+5-1/3*3*căn x+5=4

=>2*căn(x+5)=4

=>căn (x+5)=2

=>x+5=4

=>x=-1

b: =>\(6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)

=>2*căn x-1=16

=>x-1=64

=>x=65

HQ
Hà Quang Minh
Giáo viên
28 tháng 7 2023

c, \(\sqrt{\left(x-3\right)^2}-2\sqrt{\left(x-1\right)^2}+\sqrt{x^2}=0\\ \Leftrightarrow\left|x-3\right|-2\left|x-1\right|+\left|x\right|=0\left(1\right)\)

TH1\(x\ge3\)

\(\left(1\right)\Rightarrow x-3-2x+2+x=0\\ \Leftrightarrow-1=0\left(loại\right)\)

TH2\(2\le x< 3\)

\(\left(1\right)\Rightarrow3-x-2x+2+x=0\\ \Leftrightarrow-2x=-5\\ \Leftrightarrow x=\dfrac{5}{2}\left(tm\right)\)

TH3\(0\le x< 2\)

\(\left(1\right)\Rightarrow3-x+2x-2+x=0\\ \Leftrightarrow2x=1\\ \Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)

TH4\(x< 0\)

\(\left(1\right)\Rightarrow3-x+2x-2-x-=0\\ \Leftrightarrow1=0\left(loại\right)\)

Vậy \(x\in\left\{\dfrac{1}{2};\dfrac{5}{2}\right\}\)

15 tháng 9 2021

\(\sqrt{4x^2-4x+1}=3-x\left(x\in R\right)\\ \Leftrightarrow\sqrt{\left(2x-1\right)^2}=3-x\\ \Leftrightarrow2x-1=3-x\\ \Leftrightarrow3x=4\Leftrightarrow x=\dfrac{4}{3}\\ \sqrt{9x+9}+\sqrt{x+1}-\sqrt{4x+4}=2\left(x+1\right)\left(x\ge-1\right)\\ \Leftrightarrow\sqrt{x+1}\left(\sqrt{9}+1+\sqrt{4}\right)=2\left(x+1\right)\\ \Leftrightarrow6\sqrt{x+1}=2\left(x+1\right)\\ \Leftrightarrow3\sqrt{x+1}=x+1\\ \Leftrightarrow\sqrt{x+1}\left(3-\sqrt{x+1}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\\sqrt{x+1}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x+1=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\left(tm\right)\\x=8\left(tm\right)\end{matrix}\right.\)

15 tháng 9 2021

a, ĐK: \(x\in R\)

\(\sqrt{4x^2-4x+1}=3-x\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=3-x\)

\(\Leftrightarrow\left|2x-1\right|=3-x\)

TH1: \(\left\{{}\begin{matrix}2x-1\ge0\\2x-1=3-x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow x=\dfrac{4}{3}\)

TH2: \(\left\{{}\begin{matrix}2x-1< 0\\1-2x=3-x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{1}{2}\\x=-2\end{matrix}\right.\Leftrightarrow x=-2\)

31 tháng 8 2021

a) ĐKXĐ: x <= 2

pt --> 4 - 2x = 25 <=> x = -21/2 (thỏa)

31 tháng 8 2021

??

Đề kiểu gì vậy ?