Cho tam giác ABC, M là trung điểm của BC, I là trung điểm của AM. tìm N thuộc AB để C,I,N thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình ...
a, Xét tứ giác ANCM có:
AI = CIMI = NI ( đối xứng)
Mà: AC cắt MN tai J
Nên: tứ giác ANCM là hình bình hành
Xét hình bình hành ANCM cógóc AMC = 900
=> hình bình hành ANCM là hình chữ nhật
b, Xét: Tam giác ABC cân tại A có: AM là đường trung tuyến
=> AM là đường cao
\(\widehat{AMB}=\widehat{AMC}=90^0\)
Xét tam giác AMB có góc AMB = 900
MK là đường trung tuyến ứng vs cạnh huyền AB
\(\Rightarrow MK=\frac{1}{2}AB\)(1)
Mà: K là trung điểm của AB
\(\Rightarrow KA=KB=\frac{1}{2}AB\)(2)
Từ (1), (2)=> MK = AK = BK (3)
Chứng minh tương tự ta có :
\(MI=AI=CI=\frac{1}{2}AC\)(4)
Mà: AB = AC( tam giác ABC cân) (5)
Từ (3), (4),(5)
=> MI = AI = CI = MK = AK = BK
Xét tứ giác AKMI có:AK = KM = MI = AI
=> tứ giác AKMI là hình thoi
c, Ta có : AMCN là HCN
Để AMON là hình vuông thì phải cần thêm điều kiện là MI tia phân giác của góc M
hc tốt ##
a: Xét ΔAMC và ΔANB có
AM=AN
\(\widehat{MAC}\) chung
AC=AB
Do đó: ΔAMC=ΔANB
b: Ta có: ΔAMC=ΔANB
nên AM=AN
Xét ΔABC có AM/AB=AN/AC
nên MN//BC
a: Xét ΔAMC và ΔANB có
AM=AN
\(\widehat{MAC}\) chung
AC=AB
Do đó: ΔAMC=ΔANB
b: Ta có: ΔAMC=ΔANB
nên AM=AN
Xét ΔABC có AM/AB=AN/AC
nên MN//BC
c: Xét ΔMBC và ΔNCB có
MB=NC
BC chung
MC=NB
Do đó:ΔMBC=ΔNCB
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
hay ΔIBC cân tại I
=>IB=IC
hay I nằm trên đường trung trực của BC(1)
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)
Ta có: DB=DC
nên D nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,I,D thẳng hàng
- Nếu là tam giác cân hay tam giác đều thì I; P; K mới thẳng hàng nhau.
- Vị trí của M sẽ là ở trung điểm vì vẽ một đường thẳng từ I sang P, rồi vẽ từ A xuống M. Nếu M là trung điểm thì AM sẽ cắt IP đúng ở giữa để cho K bằng trung điểm của IP.
Đúng hơn, anh nên vẽ hình ra rồi giải thích, bởi vẽ hình sẽ suy luận tốt hơn, em đang học lớp 5 chưa chắc em đã làm đúng đâu :) chúc anh học tốt :D XD :)))
Bài làm
a) Xét tam giác AMN có:
AM = AN
=> Tam giác AMN cân tại A.
b) Xét tam giác ABC cân tại A có:
\(\widehat{B}=\frac{180^0-\widehat{A}}{2}\) (1)
Xét tam giác AMN cân tại A có:
\(\widehat{M}=\frac{180^0-\widehat{A}}{2}\) (2)
Từ (1) và (2) => \(\widehat{B}=\widehat{M}\)
Mà hai góc này ở vị trí đồng vị.
=> MN // BC
c) Xét tam giác ABN và tam giác ACM có:
AN = AM ( gt )
\(\widehat{A}\) chung
AB = AC ( Vì tam giác ABC cân )
=> Tam giác ABN = tam giác ACM ( c.g.c )
=> \(\widehat{ABN}=\widehat{ACM}\)( hai cạnh tương ứng )
Ta có: \(\widehat{ABN}+\widehat{MBC}=\widehat{ABC}\)
\(\widehat{ACM}+\widehat{MCB}=\widehat{ACB}\)
Mà \(\widehat{ABN}=\widehat{ACM}\)( cmt )
\(\widehat{ABC}=\widehat{ACB}\)( hai góc kề đáy của tam giác cân )
=> \(\widehat{IBC}=\widehat{ICB}\)
=> Tam giác BIC cân tại I
Vì MN // BC
=> \(\widehat{MNI}=\widehat{IBC}\)( so le trong )
\(\widehat{NMI}=\widehat{ICB}\)( so le trong )
Và \(\widehat{IBC}=\widehat{ICB}\)( cmt )
=> \(\widehat{MNI}=\widehat{NMI}\)
=> Tam giác MIN cân tại I
d) Xét tam giác cân AMN có:
E là trung điểm của MN
=> AE là trung tuyến
=> AE là đường trung trực.
=> \(\widehat{AEN}=90^0\) (1)
Xét tam giác cân MNI có:
E là trung điểm MN
=> IE là đường trung tuyến
=> IE là trung trực.
=> \(\widehat{IEN}=90^0\) (2)
Cộng (1) và (2) ta được:\(\widehat{IEN}+\widehat{AEN}=90^0+90^0=180^0\) => A,E,I thẳng hàng. (3)
Xét tam giác cân BIC có:
F là trung điểm BC
=> IF là trung tuyến
=> IF là trung trực.
=> \(\widehat{IFC}=90^0\)
Và MN // BC
Mà \(\widehat{IFC}=90^0\)
=> \(\widehat{IEN}=90^0\)
=> E,I,F thẳng hàng. (4)
Từ (3) và (4) => A,E,I,F thẳng hàng. ( đpcm )
# Học tốt #
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là trung tuyến
nên AM là đường cao
BC=12cm nên BM=6cm
=>AM=8(cm)
c: I cách đều ba cạnh nên I là giao điểm của ba đường phân giác
=>AI là phân giác của góc BAC
mà AM là phân giác của góc BC
nên A,I,M thẳng hàng