K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 10 2019

Hàm xác định trên R

\(f\left(-x\right)=\left\{{}\begin{matrix}x^3-6;-x\le-2\\\left|x\right|;-2< -x< 2\\-x^3-6;-x\ge2\end{matrix}\right.\)

\(\Rightarrow f\left(-x\right)=\left\{{}\begin{matrix}x^3-6;x\ge2\\\left|x\right|;-2< x< 2\\-x^3-6;x\le-2\end{matrix}\right.\)

\(\Rightarrow f\left(-x\right)=f\left(x\right)\)

Hàm đã cho là hàm chẵn

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Lời giải:
\(\lim\limits_{x\to 3}f(x)=\lim\limits_{x\to 3}\frac{9-x^2}{3-x}=\frac{(3-x)(3+x)}{3-x}=\lim\limits_{x\to 3}(3+x)=3+3=6=f(3)\)

Do đó hàm số liên tục tại $x=3$.

18 tháng 11 2023

\(\lim\limits_{x\rightarrow3}f\left(x\right)=\lim\limits_{x\rightarrow3}\dfrac{9-x^2}{3-x}=\lim\limits_{x\rightarrow3}3+x=3+3=6\)

\(f\left(3\right)=6\)

=>\(\lim\limits_{x\rightarrow3}f\left(x\right)=f\left(3\right)\)

=>Hàm số liên tục tại x=3

19 tháng 11 2023

\(\lim\limits_{x\rightarrow-3}f\left(x\right)=\lim\limits_{x\rightarrow-3}\dfrac{x^2+3x}{x+3}\)

\(=\lim\limits_{x\rightarrow-3}\dfrac{x\left(x+3\right)}{x+3}=\lim\limits_{x\rightarrow-3}x=-3\)

\(f\left(-3\right)=-6-\left(-3\right)=-6+3=-3\)

Vậy: \(\lim\limits_{x\rightarrow-3}f\left(x\right)=f\left(-3\right)\)

=>Hàm số liên tục tại x=-3

NV
2 tháng 8 2021

- Với \(x< 3\Rightarrow f'\left(x\right)=6x^2-6\left(m+1\right)x+6m=6\left(x-1\right)\left(x-m\right)\)

\(f'\left(x\right)=0\Rightarrow6\left(x-1\right)\left(x-m\right)=0\left(1\right)\Rightarrow\left[{}\begin{matrix}x=1\\x=m\end{matrix}\right.\) có tối đa 2 cực trị khi \(x< 3\)

- Với \(x>3\Rightarrow f'\left(x\right)=n\) là hằng số \(\Rightarrow f\left(x\right)\) ko có cực trị khi \(x>3\)

\(\Rightarrow\) Hàm có đúng 3 điểm cực trị khi và chỉ khi nó đồng thời thỏa mãn:

ĐK1: \(f'\left(x\right)=0\) có 2 nghiệm pb khi \(x< 3\Rightarrow\left\{{}\begin{matrix}m< 3\\m\ne1\end{matrix}\right.\)

ĐK2: \(x=3\) là 1 cực trị của hàm số

\(\Rightarrow f\left(x\right)\) liên tục tại \(x=3\) đồng thời đạo hàm đổi dấu khi đi qua \(x=3\)

\(\lim\limits_{x\rightarrow3^+}f\left(x\right)=\lim\limits_{x\rightarrow3^-}f\left(x\right)\Leftrightarrow3n+46=25-9m\Rightarrow n=-3m-7\) (2)

Mặt khác do 2 nghiệm của (1) đều nhỏ hơn 3 \(\Rightarrow\) tại lân cận trái của \(x=3\) đạo hàm luôn có dấu dương

\(\Rightarrow\) Để đạo hàm đổi dấu khi đi qua \(x=3\) thì \(f'\left(3^+\right)=n< 0\)

Thế vào (2) \(\Rightarrow-3m-7< 0\Rightarrow m>-\dfrac{7}{3}\)

\(\Rightarrow-\dfrac{7}{3}< m< 3\Rightarrow\sum m=0\)

17 tháng 11 2023

loading...loading...loading...  

22 tháng 11 2023

\(\lim\limits_{x\rightarrow6}f\left(x\right)=\lim\limits_{x\rightarrow6}\dfrac{3x^2-23x+30}{x-6}\)

\(=\lim\limits_{x\rightarrow6}\dfrac{3x^2-18x-5x+30}{x-6}\)

\(=\lim\limits_{x\rightarrow6}\dfrac{\left(x-6\right)\left(3x-5\right)}{x-6}=\lim\limits_{x\rightarrow6}3x-5=3\cdot6-5=13\)

\(f\left(6\right)=a\)

Để hàm số liên tục  tại x=6 thì \(f\left(6\right)=\lim\limits_{x\rightarrow6}f\left(x\right)\)

=>a=13

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

Lời giải:

Do $-3<-1$ nên:

$f(-3)=3(-3)^2-(-3)+1=31$

Do $0> -1$ nên:

$f(0)=\sqrt{0+1}-2=-1$

$\Rightarrow f(-3)+f(0)=31+(-1)=30$

19 tháng 11 2023

\(\lim\limits_{x\rightarrow6}f\left(x\right)=\lim\limits_{x\rightarrow6}\dfrac{3x^2-23x+30}{x-6}\)

\(=\lim\limits_{x\rightarrow6}\dfrac{3x^2-18x-5x+30}{x-6}\)

\(=\lim\limits_{x\rightarrow6}\dfrac{\left(x-6\right)\left(3x-5\right)}{x-6}\)

\(=\lim\limits_{x\rightarrow6}3x-5=3\cdot6-5=13\)

f(6)=a

Hàm số liên tục tại x=6 khi a=13

Hàm số không liên tục tại x=6 khi \(a\ne13\)

27 tháng 1 2021

\(f\left(20\right)=f\left(1\right)+f\left(19\right)+3\left(4.1.19-1\right)=f\left(19\right)+12.19-3\)

\(f\left(19\right)=f\left(18\right)+12.18-3\)

\(f\left(18\right)=f\left(17\right)+12.17-3\)

.....

\(f\left(3\right)=f\left(2\right)+12.2-3\)

\(f\left(2\right)=f\left(1\right)+12-3\)

Cộng vế theo vế các đẳng thức trên:

\(f\left(2\right)+f\left(3\right)+...+f\left(20\right)=f\left(1\right)+f\left(2\right)+...+f\left(19\right)+12\left(1+2+...+19\right)-3.20\)

\(\Leftrightarrow f\left(20\right)=2220\)

Đoạn này bạn tính kĩ một chút nha, mình tính không biết có sai không.

NV
2 tháng 3 2021

\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\dfrac{\sqrt{x+3}-2}{x-1}=\lim\limits_{x\rightarrow1^+}\dfrac{x-1}{\left(x-1\right)\left(\sqrt{x+3}+2\right)}=\lim\limits_{x\rightarrow1^+}\dfrac{1}{\sqrt{x+3}+2}=\dfrac{1}{4}\)

\(f\left(1\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\left(mx\right)=m\)

Hàm liên tục tại x=1 khi: \(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)=f\left(1\right)\)

\(\Leftrightarrow m=\dfrac{1}{4}\)