K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔBCD có

M là trung điểm của BC

E là trung điểm của BD

Do đó: ME là đường trung bình của ΔBCD(Định nghĩa đường trung bình của tam giác)

Suy ra: ME//CD và \(ME=\dfrac{CD}{2}\)(Định lí 2 về đường trung bình của tam giác)

b) Xét ΔAEM có 

D là trung điểm của AE

DI//EM

Do đó: I là trung điểm của AM(Định lí 1 về đường trung bình của tam giác)

c) Xét ΔAEM có 

D là trung điểm của AE

I là trung điểm của AM

Do đó: DI là đường trung bình của ΔAEM

Suy ra: DI//EM và \(DI=\dfrac{EM}{2}\)(Định lí 2 về đường trung bình của tam giác)

Ta có: \(DI=\dfrac{EM}{2}\)(cmt)

nên \(EM=2\cdot DI\)

\(\Leftrightarrow\dfrac{DC}{2}=2\cdot DI\)

\(\Leftrightarrow DC=4\cdot DI\)

\(\Leftrightarrow DC-DI=4DI-DI\)

\(\Leftrightarrow CI=3DI\)

7 tháng 1

loading... a) Do M là trung điểm của BC (gt)

⇒ BM = MC

Do M là trung điểm của AD (gt)

⇒ AM = MD

Xét ∆ABM và ∆DCM có:

AM = MD (cmt)

∠AMB = ∠CMD (đối đỉnh)

BM = MC (cmt)

⇒ ∆ABM = ∆DCM (c-g-c)

b) Do ∆ABM = ∆DCM (cmt)

⇒ ∠ABM = ∠CDM (hai góc tương ứng)

Mà ∠ABM và ∠CDM là hai góc so le trong

⇒ AB // CD

c) Do AB // CD (cmt)

⇒ ∠CAE = ∠ACD (so le trong)

∠ACE = ∠CAD (so le trong)

Xét ∆ACE và ∆CAD có:

∠ACE = ∠CAD (cmt)

AC là cạnh chung

∠CAE = ∠ACD (cmt)

⇒ ∆ACE = ∆CAD (g-c-g)

⇒ AE = CD (hai cạnh tương ứng)

Do ∆ABM = ∆DCM (cmt)

⇒ AB = CD (hai cạnh tương ứng)

Mà AE = CD (cmt)

⇒ AB = AE

Vậy A là trung điểm của BE

a: Xét tứ giác ABCM có 

E là trung điểm của đường chéo AC
E là trung điểm của đường chéo BM

Do đó: ABCM là hình bình hành

Suy ra: BC=AM

24 tháng 10 2017

a) Ta có EM là đường trung bình của tam giác BCD Þ ĐPCM.

b) DC đi qua trung điểm D của AE và song song với EM Þ DC đi qua trung điểm I của AM.

c) Vì DI là đường trung bình của tam giác AEM nên DI = (1/2) EM.(1)

Tương tự, ta được: EM = (1/2)DC (2)

Từ (1) và (2) Þ DC = 4DI

a: Xét tứ giác ABCM có 

E là trung điểm của đường chéo AC
E là trung điểm của đường chéo BM

Do đó: ABCM là hình bình hành

Suy ra: BC=AM

13 tháng 10 2021

Xét ΔBDC có 

M là trung điểm của BC

E là trung điểm của DB

Do đó: ME là đường trung bình của ΔBDC

Suy ra: ME//DC 

Xét ΔAME có 

D là trung điểm của AE

DI//EM

Do đó: I là trung điểm của AM

hay AI=IM

13 tháng 11 2021

Xét ΔBDC có 

M là trung điểm của BC

E là trung điểm của DB

Do đó: ME là đường trung bình của ΔBDC

Suy ra: ME//DC 

Xét ΔAME có 

D là trung điểm của AE

DI//EM

Do đó: I là trung điểm của AM

hay AI=IM

21 tháng 10 2021

Xét ΔBDC có

M là trung điểm của BC

E là trung điểm của BD

Do đó: ME là đường trung bình của ΔBDC
Suy ra: ME//DK

Xét ΔAEM có

D là trung điểm của AE

DK//EM

Do đó: K là trung điểm của AM

hay KA=KM