Cho tam giác ABC vuông tại A có AB = 3cm, AC = 4cm.
a) Tính BC, góc B và góc C. (làm tròn đến độ).
b) Kẻ đường phân giác của góc A cắt BC tại E. Tính BE, CE.
c) Từ E kẻ EM vuông AB, EN vuông AC. Tứ giác AMEN là hình gì? Tính chu vi và diện tích tứ giác AME
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{5^2+4^2}=\sqrt{41}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\BH\cdot BC=BA^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AH\cdot\sqrt{41}=5\cdot4\\BH\cdot\sqrt{41}=5^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=\dfrac{20\sqrt{41}}{41}\left(cm\right)\\BH=\dfrac{25\sqrt{41}}{41}\left(cm\right)\end{matrix}\right.\)
b: Xét ΔABC có AE là phân giác
nên \(\dfrac{BE}{AB}=\dfrac{CE}{AC}\)
=>\(\dfrac{BE}{5}=\dfrac{CE}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BE}{5}=\dfrac{CE}{4}=\dfrac{BE+CE}{5+4}=\dfrac{\sqrt{61}}{9}\)
=>\(BE=\dfrac{5}{9}\sqrt{61}\left(cm\right);CE=\dfrac{4}{9}\sqrt{61}\left(cm\right)\)
c: Xét tứ giác AMEN có
\(\widehat{AME}=\widehat{ANE}=\widehat{MAN}=90^0\)
=>AMEN là hình chữ nhật
Hình chữ nhật AMEN có AE là phân giác của góc MAN
nên AMEN là hình vuông
Mình tính được câu a và b rồi, chỉ còn câu c thôi bạn ơiii
Toán mà sao lại chọn là Văn???