K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2019

@Huyền Anh Lê xl bạn, bạn tự xem kĩ đề để kẻ nhé, hầu hết mình làm bảng trên mạng rất khó để chính xac hơn là tự thực hành bên ngoài. í là kẻ bảng trên đây khó

1 tháng 10 2019

a.
Ta có: E, D lần lượt là trung điểm AC, BC -> ED là đường trung bình tg ABC ->ED=1/2 AB và ED// AB (1)
mặt khác: A',B' đối xứng M qua D, E hay ME=MB',MD=MA' ->ED là đường trung bình tg MB'A' -> ED=1/2 A'B' và
ED//A'B' (2)
Từ (1) và (2) ->AB=A'B' và AB//A'B' -> đpcm
b.
cmtt câu a -> BCB'C" là hbh, mà O là trung điểm BB'-> O là trung điểm CC' (đpcm)

30 tháng 1 2018

Gọi I trung điểm LE. Ta có DL//EN//OB và DL = EN = 0.5OB Þ DENL là hình bình hành. Tương tự chứng minh LMEF là hình bình hành. Từ đó suy ra EL,FM, DN đồng quy tại I

25 tháng 7 2019

+ Vì O là giao điểm của ba đường phân giác trong tam giác ABC nên O là tâm của đường tròn nội tiếp tam giác ABC nên đáp án A sai.

+ Tam giác ABC vuông tại A có F là trung điểm của BC nên AF là đường trung tuyến ứng với cạnh huyền 

Do đó: AF =  1 2 BC (trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền)

Suy ra AF = FC = FB 

Nên F cách đều ba đỉnh A, B, C 

Do đó F là tâm đường tròn ngoại tiếp tam giác ABC.

+ Vì D  ≠ E  ≠ F và chỉ có một đường tròn ngoại tiếp tam giác ABC nên đáp án B, C sai và D đúng.

Chọn đáp án D

30 tháng 8 2018
Check inbox đi
31 tháng 8 2018

Xét tứ giác AKBM có hai đường chéo cắt nhau tại trung điểm mỗi đường (FK = FM, FA = FB) nên AKBM là hình bình hành.

Vậy thì AK song song và bằng BM.

Chứng minh tương tự thì BMCH cũng là hình bình hành, suy ra HC song song và bằng BM.

Từ đó ta có AK song song và bằng HC, hay AKHC là hình bình hành.

Vậy AH giao CK tại trung điểm mỗi đường.  (1)

Chứng minh hoàn toàn tương tự:

IC song song và bằng AM, KB cũng song song và bằng AM nên IC song song và bằng KB.

Suy ra ICBK là hình bình hành hau BI giao CK tại trung điểm mỗi đường. (2)

Từ (1) và (2), ta có AH, BI, CK đồng quy tại điểm G là trung điểm mỗi đoạn trên.

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

AB=AC

\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACF

b: Xét ΔFBC vuông tại F và ΔECB vuông tại E có

FB=EC

FC=EB

BC chung

DO đó: ΔFBC=ΔECB

Suy ra: \(\widehat{ICB}=\widehat{IBC}\)

hay ΔBIC cân tại I

d: Ta có: AB=AC

nên A nằm trên đường trung trực của BC(1)

Ta có: IB=IC

nên I nằm trên đường trung trực của BC(2)

Ta có: MB=MC

nên M nằm trên đường trung trực của BC(3)

Từ (1), (2) và (3) suy ra A,M,I thẳng hàng