chứng tỏ rằng:
a. Tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3
b. Tổng của bốn số tự nhiên liên tiếp là một số không chia hết cho 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi 3 số tự nhiên liên tiếp là n; n+1 và n+2
Tổng chúng: n+(n+1)+(n+2)= 3n+3\(⋮\) 3 \(\forall n\in N\) (đpcm)
b, Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3
Tổng chúng: \(n+\left(n+1\right)+\left(n+2\right)+\left(n+3\right)=4n+6⋮̸4\forall n\in N\left(Vì:4n⋮4;6⋮̸4\right)\left(đpcm\right)\)
c, Hai số tự nhiên liên tiếp là k và k+1
Tích chúng: k(k+1) . Nếu k chẵn thì k+1 lẻ => Tích chẵn, chia hết cho 2
Nếu k lẻ thì k+1 chẵn => Tích chẵn, chia hết cho 2
(ĐPCM)
d, Ba số tự nhiên liên tiếp là m;m+1 và m+2
Tích chúng: m(m+1)(m+2)
+) TH1: Nếu m chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH2: Nếu m chia 3 dư 1 => m+2 chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH3: Nếu m chia 3 dư 2 => m+1 chia hết cho 3 => Tích 3 số chia hết cho 3
=> Kết luận: Tích 3 số tự nhiên liên tiếp chia hết cho 3 (đpcm)
A, CÓ
B,KHÔNG
C,GOI BA SO TU NHIEN LIEN TIEP LA A,A+1, A+2,
(a+a+a)+ (1+2)
3a+3 chia hết cho 3
vi 3chia hết cho 3
vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
gọi 4 số tự nhiên liên tiếp là a,á+1,a+2,a+3
(a+a+a+a)+(1+2+3)
4a+6 không chia hết cho 3 vì 4 không chia hết cho 3
vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 3
Gọi 3 số tự nhiên liên tiếp là:\(a;\)\(a+1;\)\(a+2\)
Khi đó tổng của 3 số tuej nhiên liên tiếp là: \(a+a+1+a+2=3a+3\)\(⋮\)\(3\)
=> đpcm
Gọi 4 số tự nhiên liên tiếp là: \(a;\)\(a+1;\)\(a+2;\)\(a+3;\)
Khi đó tổng của 4 số là:\(a+a+1+a+2+a+3=4a+6\)không chia hết cho 4
=> đpcm
Ta có:
Gọi 3 số tự nhiên liên tiếp là a,a+1,a+2
Tổng 3 số tự nhiên liên tiếp là:
a + a + 1 + a + 2 = a3 + 3
a3 chia hết cho 3
3 chia hết cho 3
=> tổng 3 số tự nhiên liên tiếp chia hết cho 3
Ta có :
Tổng 4 số tự nhiên liên tiếp là:
b + b + 1 + b + 2 + b + 3 = b4 + 6
b4 chia hết cho 4
6 ko chia hết cho 4
=> Tổng 4 số tự nhiên liên tiếp ko chia hết cho 4
gọi 3 số tự nhiên liên tiếp là a ; a+1 ; a+2 ( a thuộc N )
ta có : a+(a+1)+(a+2)=3a+3=3 . ( a + 1 ) chia hết cho 3
vậy tổng của 3 số liên tiếp chia hết cho 3
cậu thiếu bước trung gian đó là : a+(a+1)+(a+2)=(a+a+a)+(1+2)=3a+3=3.a+3.1=3.(a+1) chia hết cho 3. Vậy tổng của 3 số liên tiếp chia hết cho 3
b, gọi ba số tự nhiên liên tiếp là n, n+1, n+2 (n thuộc N)
ta có: n+(n+1)+(n+2)
=3n+3
=3(n+1) chia hết cho 3
Vì 3n chia hết cho 3, 3 chia hét cho 3
=>Tổng 3 ố tự nhiên liên tiếp chia hết cho 3
Cứ thé áp dụng cho bài a,c
Nếu e cần c sẽ cho cái bản lưu ý, sau này làm mấy bài này dễ không hà.
a) gọi 2 số tự nhiên liên tiếp là
n ; n+1
n + n + 1 = 2n + 1
vì 2n chia hết cho 2
1 không chia hết cho 2
=> 2n + 1 không chia hết cho 2
vậy tổng 2 số tự nhiên liên tiếp ko chia hết cho 2
a, Ba số tự nhiên liên tiếp là a; a+1; a+2
Tổng 3 số tự nhiên liên tiếp ấy: a+a+1+a+2= 3a+3= 3(a+1)\(⋮3\)
b, Bốn số tự nhiên liên tiếp lần lượt là b;b+1;b+2;b+3
Tổng chúng bằng: b+b+1+b+2+b+3= 4b+6 = 4(b+1) (dư 2)
=> Ko chia hết.
a, Gọi 3 số tự nhiên liên tiếp là \(a,a+1,a+2\) \(\left(a\in N\right)\)
Ta có : \(a+\left(a+1\right)+\left(a+2\right)=a+a+1+a+2\)
\(=\left(a+a+a\right)+\left(1+2\right)=3a+3=3\left(a+1\right)⋮3\)
\(\Rightarrow a+\left(a+1\right)+\left(a+2\right)⋮3\)
Vậy tổng ba số tự nhiên liên tiếp chia hết cho 3
b, Gọi 4 số tự nhiên liên tiếp là \(a,a+1,a+2,a+3\left(a\in N\right)\)
Ta có : \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)=a+a+1+a+2+a+3\)
\(=\left(a+a+a+a\right)+\left(1+2+3\right)=4a+6\)
Vì \(a\in N\Rightarrow4a⋮4\) mà \(6⋮̸\)4
\(\Rightarrow4a+6⋮̸\) 4 hay \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)⋮̸\)4
Vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 4
a) Gọi 3 số tự nhiên liên tiếp là a;a+1;a+2
=> a+a+1+a+2=3a+3=3(a+1) chia hết cho 3
=> dpcm
b) Gọi 4 số tự nhiên liên tiếp là a;a+1;a+2;a+3
Ta có a+a+1+a+2+a+3 = 4a+6 không chia hết cho 4
=> dpcm
a) Gọi 3 số tự nhiên liên tiếp đó là : \(3n;3n+1;3n+2\) ( \(n\in N\))
Tổng 3 số tự nhiên liên tiếp đó là : \(3n+\left(3n+1\right)+\left(3n+2\right)=3n+3n+3n+1=9n+3=3.\left(n+1\right)⋮3\)
Suy ra : tổng 3 số tự nhiên liên tiếp chia hết cho 3
Vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
b)Gọi 4 số tự nhiên liên tiếp đó là : \(4n;4n+1;4n+2;4n+3\) ( \(n\in N\))
Tổng 4 số tự nhiên liên tiếp đó là :
\(4n+\left(4n+1\right)+\left(4n+2\right)+\left(4n+3\right)=4n+4n+4n+4n+1+2+3=16n+6\)
Vì \(16⋮4\)nên \(16n⋮4\)mà 6 không chia hết cho 4 nên \(16n+6\)không chia hết cho 4
Suy ra tổng 4 số tự nhiên liên tiếp không chia hết cho 4
Vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 4
Tổng 4 số tự nhiên liên tiếp đó là :
a)Gọi 3 số tự nhiên liên tiếp là a;a+1;a+2(a∈N)
⟹a+(a+1)+(a+2)
=a+a+1+a+2
=a+a+a+1+2
=3a+3 chia hết cho 3
⟹Tổng của 3 số tự nhiên liên tiếp chia hết cho 3→điều phải chứng minh
b)Gọi 4 số tự nhiên liên tiếp là k;k+1;k+2;k+3(k∈N)
⟹k+(k+1)+(k+2)+(k+3)
=k+k+1+k+2+k+3
=k+k+k+k+1+2+3
=4k+6 không chia hết cho 4
⟹Tổng của 4 số tự nhiên liên tiếp không chia hết cho 4→điều phải chứng minh
Chúc bạn học giỏi và gặp nhiều may mắn trong cuộc sống
3 số tự nhiên liên tiếp là n , n+1. n+2
n+n+1+n+3 = 3n+3 chia hết cho 3
4 số tự nhiên liêp tiếp là n , n+1 , n+2 , n+ n
n+n+1+n+2+n+3 = 4n + 5 ko chia hết cho 4
ok học tốt nha man
a)Gọi ba số nguyên liên tiếp là a, a+1, a+2
ta có cấc+a+1+a+2=3a+3
vì 3a chia hết cho 3
3 chia hết cho 3
nên tổng của 3 số nguyên liên tiếp thì chia hết cho 3
b)Gọi 5 số nguyên liên tiếp là a,a+1,a+2.a+3.a+4
ta có:a+a+1+a+2+a+3+a+4=10a+5 chia hết cho 5
chúc bạn học tốt !!!