Cho tam giác ABC, E là trung điểm của AB, F thuộc AC: AF=2FC. Gọi M là trung điểm của BC và I là điểm thỏa mãn 4EI=3FI. Chứng minh A,M,I thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{AF}=2\overrightarrow{FC}\Rightarrow\overrightarrow{AF}=\frac{2}{3}\overrightarrow{AC}\)
\(\overrightarrow{AM}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}\)
\(\overrightarrow{EI}=\frac{3}{4}\overrightarrow{IF}=\frac{3}{4}\left(\overrightarrow{IE}+\overrightarrow{EF}\right)\Rightarrow\overrightarrow{EI}=\frac{3}{7}\overrightarrow{EF}\)
\(\overrightarrow{AI}=\overrightarrow{AE}+\overrightarrow{EI}=\overrightarrow{AE}+\frac{3}{7}\overrightarrow{EF}=\overrightarrow{AE}+\frac{3}{7}\left(\overrightarrow{EA}+\overrightarrow{AF}\right)=\frac{4}{7}\overrightarrow{AE}+\frac{3}{7}\overrightarrow{EF}\)
\(\overrightarrow{AI}=\frac{4}{7}.\frac{1}{2}\overrightarrow{AB}+\frac{3}{7}.\frac{2}{3}\overrightarrow{AC}=\frac{2}{7}\overrightarrow{AB}+\frac{2}{7}\overrightarrow{AC}=\frac{4}{7}\left(\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}\right)=\frac{4}{7}\overrightarrow{AM}\)
\(\Rightarrow A;M;I\) thẳng hàng
Giải
a) vì m la trung diểm của BC => BM=MC
Xét tam giac BAM va tam giac MAC có:
AB=AC(dề bài cho)
BM=MC(Chung minh tren)
AM la cạnh chung(de bai cho)
=>Tam giác BAM=tam giac MAC(c.c.c)
b)từ trên
=>góc BAM=góc MAC(hai goc tuong ung)
Tia AM nam giua goc BAC (1)
goc BAM=goc MAC(2)
từ (1) va (2)
=>AM la tia phan giac cua goc BAC
c)Còn nữa ......-->
Bài làm
a) Xét tam giác AMN có:
AM = AN
=> Tam giác AMN cân tại A.
b) Xét tam giác ABC cân tại A có:
\(\widehat{B}=\frac{180^0-\widehat{A}}{2}\) (1)
Xét tam giác AMN cân tại A có:
\(\widehat{M}=\frac{180^0-\widehat{A}}{2}\) (2)
Từ (1) và (2) => \(\widehat{B}=\widehat{M}\)
Mà hai góc này ở vị trí đồng vị.
=> MN // BC
c) Xét tam giác ABN và tam giác ACM có:
AN = AM ( gt )
\(\widehat{A}\) chung
AB = AC ( Vì tam giác ABC cân )
=> Tam giác ABN = tam giác ACM ( c.g.c )
=> \(\widehat{ABN}=\widehat{ACM}\)( hai cạnh tương ứng )
Ta có: \(\widehat{ABN}+\widehat{MBC}=\widehat{ABC}\)
\(\widehat{ACM}+\widehat{MCB}=\widehat{ACB}\)
Mà \(\widehat{ABN}=\widehat{ACM}\)( cmt )
\(\widehat{ABC}=\widehat{ACB}\)( hai góc kề đáy của tam giác cân )
=> \(\widehat{IBC}=\widehat{ICB}\)
=> Tam giác BIC cân tại I
Vì MN // BC
=> \(\widehat{MNI}=\widehat{IBC}\)( so le trong )
\(\widehat{NMI}=\widehat{ICB}\)( so le trong )
Và \(\widehat{IBC}=\widehat{ICB}\)( cmt )
=> \(\widehat{MNI}=\widehat{NMI}\)
=> Tam giác MIN cân tại I
d) Xét tam giác cân AMN có:
E là trung điểm của MN
=> AE là trung tuyến
=> AE là đường trung trực.
=> \(\widehat{AEN}=90^0\) (1)
Xét tam giác cân MNI có:
E là trung điểm MN
=> IE là đường trung tuyến
=> IE là trung trực.
=> \(\widehat{IEN}=90^0\) (2)
Cộng (1) và (2) ta được:\(\widehat{IEN}+\widehat{AEN}=90^0+90^0=180^0\) => A,E,I thẳng hàng. (3)
Xét tam giác cân BIC có:
F là trung điểm BC
=> IF là trung tuyến
=> IF là trung trực.
=> \(\widehat{IFC}=90^0\)
Và MN // BC
Mà \(\widehat{IFC}=90^0\)
=> \(\widehat{IEN}=90^0\)
=> E,I,F thẳng hàng. (4)
Từ (3) và (4) => A,E,I,F thẳng hàng. ( đpcm )
# Học tốt #
a, Vì E,F là trung điểm AC,BC nên EF là đtb tg ABC
Do đó EF//AB hay EF//AD và \(EF=\dfrac{1}{2}AB=AD\)(D là trung điểm AB)
Do đó AEFD là hbh
Vì AF là trung tuyến tam giác ABC cân tại A nên AF cũng là đường cao
Do đó AF⊥BC(1)
Lại có D,E là trung đỉm AB,AC nên DE là đtb tg ABC
Do đó DE//BC(2)
(1)(2) ta được DE⊥AF
Vậy AEFD là hthoi
b, Vì AEFD là hthoi mà I là trung điểm AF nên I là trung điểm DE
Vậy D,I,E thẳng hàng
a: Xét ΔCAB có
M là trung điểm của CB
ME//BA
Do đó: E là trung điểm của AC
b: Xét tứ giác AFME có
AF//ME
AE//MF
Do đó: AFME là hình bình hành
=>AM cắt FE tại trung điểm của mỗi đường
=>E,O,F thẳng hàng