Giải phương trình
\(x^4+5x^3-8x-40=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(x^2+3x+4=0\)
\(\text{Δ}=3^2-4\cdot1\cdot4=9-16=-7< 0\)
Do đó: Phương trình vô nghiệm
\(x^4+5x^3-8x-40=0\)
\(\Leftrightarrow x^3\left(x+5\right)-8\left(x+5\right)=0\)
\(\Leftrightarrow\left(x^3-8\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)\left(x+5\right)=0\)
Ta có : \(x^2+2x+4=x^2+2x+1+3=\left(x+1\right)^2+3\ge3\)\(\Rightarrow\left[{}\begin{matrix}x+5=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
\(x^4+5x^3-8x-40=0\)
\(\Leftrightarrow x^4+3x^3-10x^2+2x^3+6x^2-20x+4x^2+12x-40=0\)
\(\Leftrightarrow x^2\left(x^2+3x-10\right)+2x\left(x^2+3x-10\right)+4\left(x^2+3x-10\right)=0\)
\(\Leftrightarrow\left(x^2+3x-10\right)\left(x^2+2x+4\right)=0\)
\(\Leftrightarrow\left(x^2-2x+5x-10\right)\left(x^2+2x+4\right)=0\)
\(\Leftrightarrow\left[x\left(x-2\right)+5\left(x-2\right)\right]\left(x^2+2x+4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+5\right)\left(x^2+2x+4\right)=0\)
Dễ thấy: \(x^2+2x+4=x^2+2x+1+3=\left(x+1\right)^2+3>0\) (vô nghiệm)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+5=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Điều kiện : \(x\ge-1\)
Xét hàm số trên [\(-1;+\infty\) ) : \(f\left(x\right)=x^3-3x^2-8x+40\)
\(g\left(x\right)=8\sqrt[4]{4x+4}\)
Theo bất đẳng thức Cauchy, ta có :
\(g\left(x\right)=\sqrt[4]{2^4.2^4.2^4\left(5x+4\right)}\le\frac{2^4+2^4+2^4+\left(4x+4\right)}{4}=x+13\) (2)
Dấu bằng ở (2) xảy ra khi và chỉ khi x = 3
Mặt khác :
\(f\left(x\right)-\left(x+13\right)=x^3-3x^2-9x+27=\left(x-3\right)^2\left(x+3\right)\ge0\) với mọi \(x\ge-1\) (3)
Dấu bằng ở (3) xảy ra khi và chỉ khi x = 3. Ta có :
\(\left(1\right)\Leftrightarrow f\left(x\right)=g\left(x\right)\) (4)
Vậy (4) có nghĩa là dấu bằng ở (2) và (3) đồng thời xảy ra,hay x = 3 (thỏa mãn điều kiện)
Phương trình đã cho có nghiệm duy nhất x = 3
\(x^4+5x^3-8x-40=0\)
\(\Leftrightarrow x^3\left(x+5\right)-8\left(x+5\right)=0\)
\(\Leftrightarrow\left(x^3-8\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)\left(x+5\right)=0\)
Ta có : \(x^2+2x+4=x^2+2x+1+3=\left(x+1\right)^2+3\ge3\)
\(\Rightarrow\orbr{\begin{cases}x+5=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}}\)
Chúc bạn học tốt !!!
=x4-16+5x(x2-4)+12(x-2)=0
<=>(x-2)[(x2+4)(x+2)+5x(x+2)+12]=0
<=>(x-2)(x3+7x2+14x+20)=0 <=> x=2 hoặc
x3+7x2+14x+20=0 <=>(x+5)(x2+2x+4)=0 <=>x+5=0(x2+2x+4>0) <=>x=-5
vậy x=2;x=-5