Nếu \(\frac{a+b}{c+d}=\frac{b+c}{d+a}\)(trong đó a+b+c+d không bằng 0) thì a=c
Các có thể giúp mình giải nhanh lên được không mình đang vội
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a/b = c/d => a^2/b^2 = c^2/d^2
Áp dụng tính chất của dãy tỉ số = nhau ta có:
a/b = c/d = a+c/b+d => a^2/b^2 =c^2/d^2 = (a+c/b+d)^2 (1)
a^2/b^2 = c^2/d^2 = a^2+c^2/b^2+d^2 (2)
Từ (1) và (2) => a^2+c^2/b^2+d^2 = (a+c/b+d)^2 (đpcm)
Vì \(\frac{a}{b}=\frac{c}{d}\)=>\(\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{ac}{bd}\)hay \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{2ac}{2bd}\)
Aps dụng tính chất dãy tỉ số = nhau ta có:
\(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+2ac+c^2}{b^2+2bd+d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\left(\frac{a+c}{b+d}\right)^2\)
=>đpcm
Áp dụng tính chất tỉ lệ thức, ta có:
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
=> ĐPCM
đặt a/b=c/d=k =>a=bk;c=dk
A)thay a và c vào (3a+2c)/(3b+2d)và (-5a+3c)/(-5b+3d)
+)(3bk+2dk)/(3b+2d)=k
+)(-5bk+3dk)/(-5b+3d)=k
vậy.....................................................................................................
B)thay a=bk;c=dk vào 2 biểu trên ta có
+)(bk-b)/b=k-1
+)(dk-d)/d=k-1
(bạn sai đề bài r chỗ a-d thành a-b)
Câu hỏi của Nguyễn Nguyên Anh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
Từ \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)(1)
Từ \(\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)(2)
Từ (1) và (2) \(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}=\left(\frac{a}{b}\right)^3\left(đpcm\right)\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)
\(\Rightarrow ac-ad=ac-cd\)
\(\Rightarrow a\left(c-d\right)=c\left(a-d\right)\)
\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\left(đpcm\right)\)
bạn dùng phương pháp suy ngươc nha . mình thử bạn xem bạn có làm được ko.
mình suy từ kết quả lên đề bài cho nha
\(a)\)\(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)
\(\Leftrightarrow\)\(\frac{a+b+c+d}{a-b+c-d}=\frac{a+b-c-d}{a-b-c+d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a+b+c+d}{a-b+c-d}=\frac{a+b-c-d}{a-b-c+d}=\frac{a+b+c+d+a+b-c-d}{a-b+c-d+a-b-c+d}=\frac{2\left(a+b\right)}{2\left(a-b\right)}=\frac{a+b}{a-b}\) \(\left(1\right)\)
Lại có :
\(\frac{a+b+c+d}{a-b+c-d}=\frac{a+b-c-d}{a-b-c+d}=\frac{a+b+c+d-a-b+c+d}{a-b+c-d-a+b+c-d}=\frac{2\left(c+d\right)}{2\left(c-d\right)}=\frac{c+d}{c-d}\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)\(\Leftrightarrow\)\(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b+a-b}{c+d+c-d}=\frac{2a}{2c}=\frac{a}{c}\) \(\left(3\right)\)
Lại có :
\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b-a+b}{c+d-c+d}=\frac{2b}{2d}=\frac{b}{d}\) \(\left(4\right)\)
Từ \(\left(3\right)\) và \(\left(4\right)\) suy ra \(\frac{a}{c}=\frac{b}{d}\) ( đpcm )
Chúc bạn học tốt ~
\(b)\)\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\)\(a^2+b^2+c^2-ab-bc-ca=0\) ( vì \(a+b+c=0\) )
\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c}\)
Vậy ...
Chúc bạn học tốt ~
Chúc em may mắn :Đ
Ta có: \(\frac{a+b}{c+d}=\frac{b+c}{d+a}\Rightarrow\frac{a+b}{b+c}=\frac{c+d}{d+a}\)
Áp dụng dãy tỉ số bằng nhau:
\(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b+c+d}{b+c+d+a}=1\)
=> \(a+b=b+c\Rightarrow a=c\)