chứng minh rằng
\(\frac{x}{19}=\frac{y}{21}\)và 2x-y=34
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng dãy tỉ só bằng nhau ta có :
\(\frac{x}{19}=\frac{y}{21}=\frac{2x}{38}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
=> x = 2.19 = 38
=> y = 2.21 = 42
a)Vì \(\frac{x}{19}=\frac{y}{21}\Rightarrow\frac{2x}{38}=\frac{y}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\Leftrightarrow\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{19}=2\\\frac{y}{21}=2\end{cases}\Rightarrow\hept{\begin{cases}x=38\\y=42\end{cases}}}\)
b)Vì x + y + z =18
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\Leftrightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{18}{9}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=2\\\frac{y}{3}=2\\\frac{z}{4}=2\end{cases}\Rightarrow}\hept{\begin{cases}x=4\\y=6\\z=8\end{cases}}\)
c)\(2^x+2^{x+3}=144\)
\(\Leftrightarrow2^x+2^x.2^3=144\)
\(\Leftrightarrow2^x.\left(2^3+1\right)=144\)
\(\Leftrightarrow2^x.9=144\)
\(\Leftrightarrow2^x=16=2^4\)
Vậy x=4
a) \(\frac{x}{19}=\frac{y}{21}=\frac{2x}{38}\)
Áp dụng tính chất dãy tỉ số bằng nhau. ta có:
\(\frac{x}{19}=\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
Từ \(\frac{x}{19}=2\Rightarrow x=2.19=38\)
\(\frac{y}{21}=2\Rightarrow y=2.21=42\)
Vậy x = 38 ; y=42
c) \(2^x+2^{x+3}=144\)
\(\Rightarrow2^x+2^x\times2^3=144\)
\(\Rightarrow2^x.\left(1+2^3\right)=144\)
\(\Rightarrow2^x.9=144\)
\(\Rightarrow2^x=144\div9=16=2^4\)
\(\Rightarrow x=4\)
Vậy x = 4
a, Áp dụng dãy tỉ số bàng nhau ta có :
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)
\(x=14;y=26\)
b, Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{x}{19}=\frac{y}{21}=\frac{2x-y}{2.19-21}=\frac{34}{17}=2\)
\(x=38;y=42\)
áp dụng tính chất dãy tỉ số bằng nhau ta được
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)
x=2.7=14
y=2.13=26
vậy x=14 y=26
áp dụng tính chất dãy tỉ số bằng nhau ta được
\(\frac{x}{19}=\frac{y}{21}=\frac{x}{38}=\frac{y}{21}=\frac{x-y}{38-21}=\frac{34}{17}=2\)
x=2.38=76
y=2.21=42
vậy x=76 y=42
1. -2x=5y =>\(\frac{x}{y}=\frac{-5}{2}=>y=\frac{-2x}{5}\)
Thế y=\(\frac{-2x}{5}\) ta được:
x+\(\frac{-2x}{5}\)=30 \(\Rightarrow\frac{5x-2x}{5}=30\)
\(\Rightarrow3x=150\)\(\Rightarrow x=50\)
=>y=30-x=30-50=-20.
Vậy x=50; y=-20.
Những bài khác tương tự bạn nhé!
a. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)
Suy ra :
+) \(\frac{x}{7}=2\Leftrightarrow x=14\)
+) \(\frac{y}{13}=2\Leftrightarrow y=26\)
Vậy x = 14 ; y = 26
b. \(\frac{x}{y}=\frac{17}{3}\Leftrightarrow\frac{x}{17}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)
Suy ra :
+) \(\frac{x}{17}=-3\Leftrightarrow x=-51\)
+) \(\frac{y}{3}=-3\Leftrightarrow y=-9\)
Vậy x = - 51 ; y = - 9
c. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{19}=\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
Suy ra :
+) \(\frac{x}{19}=2\Leftrightarrow x=38\)
+) \(\frac{y}{21}=2\Leftrightarrow y=42\)
Vậy x = 38 ; y = 42
d. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
Suy ra :
+) \(\frac{x^2}{9}=4\Leftrightarrow x^2=36=6^2\Leftrightarrow x=\pm6\)
+) \(\frac{y^2}{16}=4\Leftrightarrow y^2=64=8^2\Leftrightarrow y=\pm8\)
Vậy x =\(\pm\)6 ; y =\(\pm\)8
a,AD t/c DTS bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{7}=2\Rightarrow x=14\\\frac{y}{13}=2\Rightarrow y=26\end{cases}}\)
b,\(\frac{x}{y}=\frac{17}{3}\Leftrightarrow\frac{x}{17}=\frac{y}{3}\)
AD t/c DTS bằng nhua ta có:
\(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=-\frac{60}{20}=-3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{17}=-3\Rightarrow x=-51\\\frac{y}{3}=-3\Rightarrow y=-9\end{cases}}\)
c,\(\frac{x}{19}=\frac{y}{21}\Leftrightarrow\frac{2x}{38}=\frac{y}{21}\)
AD t/c DTS bằng nhau ta có:
\(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{19}=2\Rightarrow x=38\\\frac{y}{21}=2\Rightarrow x=42\end{cases}}\)
d,Đặt \(\frac{x^2}{9}=\frac{y^2}{16}=k\)
\(\Rightarrow x^2=9k;y^2=16k\)
\(\Rightarrow x^2+y^2=9k+16k=25k=100\)
\(\Rightarrow k=4\)
\(\Rightarrow\frac{x^2}{9}=4\Leftrightarrow x^2=36;\frac{y^2}{16}=4\Leftrightarrow y^2=64\)
\(\Rightarrow\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
a) \(\frac{x}{y}=\frac{7}{3}\) => \(\frac{x}{7}=\frac{y}{3}\) => \(\frac{5x}{35}=\frac{2y}{6}=\frac{5x-2y}{35-6}=\frac{87}{29}=3\)
=> \(\begin{cases}x=21\\y=9\end{cases}\)
Câu b làm tương tự
Chúc bạn làm bài tốt
c) \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) => \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\) => \(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
=> \(\begin{cases}x=1\\y=2\\z=3\end{cases}\)
d) Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{12}\)
=> \(\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)
=> 6x = 12
=> x=2
Thay vào đề bài ta được y = 3
Chúc bạn làm bài tốt
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)
=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5
=> x-1/2 = 5 => x-1=5 => x=6
y-2/3 = 5 => y-2 = 15 => y =17
z-3/4=5 => z-3=20 => z=23
Vì \(\frac{x}{19}=\frac{y}{21}\)
\(\Rightarrow\frac{2x}{38}=\frac{y}{21}\)
Áp dụng tính chấy của dãy tỉ số bằng nhau ta có:
\(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
\(\Rightarrow\hept{\begin{cases}x=2.19=38\\y=2.21=42\end{cases}}\)
Vậy ...
Ta có
\(\frac{x}{19}=\frac{y}{21}\Rightarrow\frac{2x}{38}=\frac{y}{21}\)
Ap dụng tính chất DTSBN ta có
\(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
\(+\frac{x}{19}=2\Rightarrow x=38\)
\(+\frac{y}{21}=2\Rightarrow y=42\)