Tìm x biết:
\(\frac{x}{y}=\frac{7}{13}\)và x+y=-60
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)
Suy ra :
+) \(\frac{x}{7}=2\Leftrightarrow x=14\)
+) \(\frac{y}{13}=2\Leftrightarrow y=26\)
Vậy x = 14 ; y = 26
b. \(\frac{x}{y}=\frac{17}{3}\Leftrightarrow\frac{x}{17}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)
Suy ra :
+) \(\frac{x}{17}=-3\Leftrightarrow x=-51\)
+) \(\frac{y}{3}=-3\Leftrightarrow y=-9\)
Vậy x = - 51 ; y = - 9
c. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{19}=\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
Suy ra :
+) \(\frac{x}{19}=2\Leftrightarrow x=38\)
+) \(\frac{y}{21}=2\Leftrightarrow y=42\)
Vậy x = 38 ; y = 42
d. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
Suy ra :
+) \(\frac{x^2}{9}=4\Leftrightarrow x^2=36=6^2\Leftrightarrow x=\pm6\)
+) \(\frac{y^2}{16}=4\Leftrightarrow y^2=64=8^2\Leftrightarrow y=\pm8\)
Vậy x =\(\pm\)6 ; y =\(\pm\)8
a,AD t/c DTS bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{7}=2\Rightarrow x=14\\\frac{y}{13}=2\Rightarrow y=26\end{cases}}\)
b,\(\frac{x}{y}=\frac{17}{3}\Leftrightarrow\frac{x}{17}=\frac{y}{3}\)
AD t/c DTS bằng nhua ta có:
\(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=-\frac{60}{20}=-3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{17}=-3\Rightarrow x=-51\\\frac{y}{3}=-3\Rightarrow y=-9\end{cases}}\)
c,\(\frac{x}{19}=\frac{y}{21}\Leftrightarrow\frac{2x}{38}=\frac{y}{21}\)
AD t/c DTS bằng nhau ta có:
\(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{19}=2\Rightarrow x=38\\\frac{y}{21}=2\Rightarrow x=42\end{cases}}\)
d,Đặt \(\frac{x^2}{9}=\frac{y^2}{16}=k\)
\(\Rightarrow x^2=9k;y^2=16k\)
\(\Rightarrow x^2+y^2=9k+16k=25k=100\)
\(\Rightarrow k=4\)
\(\Rightarrow\frac{x^2}{9}=4\Leftrightarrow x^2=36;\frac{y^2}{16}=4\Leftrightarrow y^2=64\)
\(\Rightarrow\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
1. Tìm x,y biết
a):\(\frac{x}{9}=\frac{13}{6}\Rightarrow6x=13.9\Rightarrow6x=117\Rightarrow x=\frac{117}{6}=\frac{39}{2}\)
b)\(\frac{17}{x}=\frac{51}{57}\Rightarrow51x=17.57\Rightarrow51x=969\Rightarrow x=\frac{969}{51}=19\)
c)\(\frac{x+2}{3}=\frac{4}{9}\Rightarrow9\left(x+2\right)=3.4\Rightarrow9x+18=12\)
\(\Rightarrow9x=12-18\Rightarrow9x=-6\Rightarrow x=\frac{-6}{9}=\frac{-2}{3}\)
d)\(\frac{x+1}{5}=\frac{125}{\left(x+1\right)^2}\Rightarrow5.125=\left(x+1\right)\left(x+1\right)^2\)
\(\Rightarrow5^4=\left(x+1\right)^3\)
2.Lập tỉ lệ thức:
a) Từ 4 số trên, ta có đẳng thức sau: \(2.14=7.4\)
Vậy, các tỉ lệ thức lập được là: \(\frac{2}{7}=\frac{4}{14};\frac{7}{2}=\frac{14}{4};\frac{2}{4}=\frac{7}{14};\frac{4}{2}=\frac{14}{7}\)
b) Từ 4 số trên, ta có đẳng thức sau: \(4.12=6.8\)
Vậy, các tỉ lệ thức lập được là: \(\frac{4}{6}=\frac{8}{12};\frac{6}{4}=\frac{12}{8};\frac{4}{8}=\frac{6}{12};\frac{8}{4}=\frac{12}{6}\)
1)
a) Ta có: \(\frac{x}{y}=\frac{7}{13}\).
=> \(\frac{x}{7}=\frac{y}{13}\) và \(x+y=60.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{60}{20}=3.\)
\(\left\{{}\begin{matrix}\frac{x}{7}=3=>x=3.7=21\\\frac{y}{13}=3=>y=3.13=39\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(21;39\right).\)
c) Ta có: \(\frac{x}{y}=\frac{9}{10}.\)
=> \(\frac{x}{9}=\frac{y}{10}\) và \(y-x=120.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{9}=\frac{y}{10}=\frac{y-x}{10-9}=\frac{120}{1}=120.\)
\(\left\{{}\begin{matrix}\frac{x}{9}=120=>x=120.9=1080\\\frac{y}{10}=120=>y=120.10=1200\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(1080;1200\right).\)
d) Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}.\)
=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và \(x+y+z=81.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{81}{9}=9.\)
\(\left\{{}\begin{matrix}\frac{x}{2}=9=>x=9.2=18\\\frac{y}{3}=9=>y=9.3=27\\\frac{z}{4}=9=>z=9.4=36\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(18;27;36\right).\)
Mình chỉ làm 3 câu thôi nhé, dài quá bạn.
Chúc bạn học tốt!
Theo đề bài ra ta có:
x/30=y/10=z/60=x+y+z/30+10+60=92/100=0,92
=> x/30 = 0,92 => 0,92 × 30 = 27,6
=> y/10 = 0,92 => 0,92 × 10 = 9,2
=> z/60 = 0,92 => 0,92 × 60 = 55,2
Vậy x = 27,6 ; y = 9,2 ; z = 55,2
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\begin{array}{l}\frac{x}{5} = \frac{y}{7} = \frac{z}{9} = \frac{{x - y + z}}{{5 - 7 + 9}} = \frac{{\frac{7}{3}}}{7} = \frac{7}{3}.\frac{1}{7} = \frac{1}{3}\\ \Rightarrow x = 5.\frac{1}{3} = \frac{5}{3};\\y = 7.\frac{1}{3} = \frac{7}{3};\\z = 9.\frac{1}{3} = \frac{9}{3} = 3.\end{array}\)
Vậy \(x = \frac{5}{3};y = \frac{7}{3};z = 3\)
Từ \(x-y=10\Rightarrow x=10+y\)
Khi đó \(\frac{13+10+y}{7-y}=\frac{7}{3}\Leftrightarrow\frac{23+y}{7-y}=\frac{7}{3}\Leftrightarrow3\left(23+y\right)=7\left(7-y\right)\Leftrightarrow69+3y=49-7y\)
\(\Leftrightarrow3y+7y=49-69\Leftrightarrow10y=-20\Leftrightarrow y=-2\Rightarrow x=10+\left(-2\right)\Leftrightarrow x=8\)
Vậy \(\left(x;y\right)=\left(8;-2\right)\)
Ta có x-y=10 => y=x-10
Thay y=x-10 vào bt trên ta được
\(\frac{13+x}{7-\left(x-10\right)}=\frac{7}{3}\)=> \(\frac{13+x}{7-x+10}=\frac{7}{3}\)=> \(\frac{13+x}{17-x}=\frac{7}{3}\) => 3(13+x)=7(17-x) => 39+3x=119-7x => 3x+7y=119-39 => 10x=80 => x=8
Vậy x=8
còn cách giải khác là bạn tìm y theo x rồi tính x nhé
Ta có: \(\frac{x}{3}=\frac{y}{4}\)=> \(\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{6}=\frac{z}{8}\) => \(\frac{y}{12}=\frac{z}{16}\)
=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{16}\) => \(\frac{3x}{27}=\frac{2y}{24}=\frac{z}{16}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{3x}{27}=\frac{2y}{24}=\frac{z}{16}=\frac{3x-2y-z}{27-24-16}=\frac{13}{-13}=-1\)
=> \(\hept{\begin{cases}\frac{x}{9}=-1\\\frac{y}{12}=-1\\\frac{z}{16}=-1\end{cases}}\) => \(\hept{\begin{cases}x=-1.9=-9\\y=-1.12=-12\\z=-1.16=-16\end{cases}}\)
Vậy ...
\(\frac{x}{3}=\frac{y}{4}\Leftrightarrow x=\frac{3y}{4}\) ; \(\frac{y}{6}=\frac{z}{8}\Leftrightarrow z=\frac{8y}{6}\Leftrightarrow z=\frac{4y}{3}\)
Ta có: 3x - 2y - z = 13
\(\Leftrightarrow3\times\frac{3y}{4}-2y-\frac{4y}{3}=13\)
\(\Leftrightarrow-\frac{1}{2}y=13\)
\(\Leftrightarrow y=-26\). Từ đây ta dễ dàng tính x, y nhờ các công thức đã lập
Đây là phương pháp quy nhiều ẩn về 1 ẩn
ta có x/y=7/13
=>x=7k,y=13k (k khác 0) (*)
mà x+y=60
=>7k+13k=60
=>k(7+13)=60 =>k=3
thay k=3 vào (*) ta được
x=21,y=39
\(\frac{x}{y}=\frac{7}{13}\) và \(x+y=-60\)
\(\Rightarrow\frac{x}{7}=\frac{y}{13}\) và \(x+y=-60\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=-\frac{60}{20}=-3\)
\(\Rightarrow x=-3.7=-21\)
\(y=-3.13=-39\)
Vậy \(x=-21;y=-39\)
Chúc bạn học tốt !!!